13 research outputs found

    ECOREGIONAL DIFFERENCES IN LATE-20TH-CENTURY LAND-USE AND LAND-COVER CHANGE IN THE U.S. NORTHERN GREAT PLAINS

    Get PDF
    Land-cover and land-use change usually results from a combination of anthropogenic drivers and biophysical conditions found across multiple scales, ranging from parcel to regional levels. A group of four Level III ecoregions located in the u.s. northern Great Plains is used to demonstrate the similarities and differences in land change during nearly a 30-year period (1973-2000) using results from the U.S. Geological Survey\u27s Land Cover Trends project. There were changes to major suites of land-cover; the transitions between agriculture and grassland/shrubland and the transitions among wetland, water, agriculture, and grassland/shrubland were affected by different factors. Anthropogenic drivers affected the land-use tension (or land-use competition) between agriculture and grassland/shrubland land-covers, whereas changes between wetland and water land-covers, and their relationship to agriculture and grassland/shrubland land-covers, were mostly affected by regional weather cycles. More land-use tension between agriculture and grassland/shrubland landcovers occurred in ecoregions with greater amounts of economically marginal cropland. Land-cover change associated with weather variability occurred in ecoregions that had large concentrations of wetlands and water impoundments, such as the Missouri River reservoirs. The Northwestern Glaciated Plains ecoregion had the highest overall estimated percentage of change because it had both land-use tension between agriculture and grassland/shrubland land-covers and wetland-water changes

    Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States

    Get PDF
    The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey\u27s Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States

    Land Cover Trends Dataset, 1973–2000

    Get PDF
    The U.S. Geological Survey Land Cover Trends Project is releasing a 1973–2000 time-series land-use/land-cover dataset for the conterminous United States. The dataset contains 5 dates of land-use/land-cover data for 2,688 sample blocks randomly selected within 84 ecological regions. The nominal dates of the land-use/land-cover maps are 1973, 1980, 1986, 1992, and 2000. The land-use/land-cover maps were classified manually from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery using a modified Anderson Level I classification scheme. The resulting land-use/land-cover data has a 60-meter resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. The files are labeled using a standard file naming convention that contains the number of the ecoregion, sample block, and Landsat year. The downloadable files are organized by ecoregion, and are available in the ERDAS IMAGINETM (.img) raster file format

    Modelling regional land change scenarios to assess land abandonment and reforestation dynamics in the Pyrenees (France)

    Get PDF
    International audienceOver the last decades and centuries, European mountain landscapes have experienced substantial transformations. Natural and anthropogenic LULC changes (land use and land cover changes), especially agro-pastoral activities, have directed influenced the spatial organization and composition of European mountain landscapes. For the past 60 years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population. Stakeholders, to better anticipate future changes, need spatially and temporally explicit models to identiy areas at risk of land change and possible abandonment. This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains, based on historical LULC trands and a range of future socio-economic drivers. The proposed methodology considers local specificities of Pyrenan valleys, sub-regional climate and topographical properties, and regional economic policies. Results indicate that some regions are projected to face strong abandonment, regardless of scenario conditions. Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive (agricultural and/or pastoral) production and profitability. The combination of the results for the four scenarios allows assessements of where encroachment (e.g. colonization by shrublands) and reforestation are the most probable. This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions

    Exploring subtle land use and land cover changes: a framework for future landscape studies

    Get PDF
    UMR AMAP, Ă©quipe 3International audienceLand cover and land use changes can have a wide variety of ecological effects, including significant impacts on soils and water quality. In rural areas, even subtle changes in farming practices can affect landscape features and functions, and consequently the environment. Fine-scale analyses have to be performed to better understand the land cover change processes. At the same time, models of land cover change have to be developed in order to anticipate where changes are more likely to occur next. Such predictive information is essential to propose and implement sustainable and efficient environmental policies. Future landscape studies can provide a framework to forecast how land use and land cover changes is likely to react differently to subtle changes. This paper proposes a four step framework to forecast landscape futures at fine scales by coupling scenarios and landscape modelling approaches. This methodology has been tested on two contrasting agricultural landscapes located in the United States and France, to identify possible landscape changes based on forecasting and backcasting agriculture intensification scenarios. Both examples demonstrate that relatively subtle land cover and land use changes can have a large impact on future landscapes. Results highlight how such subtle changes have to be considered in term of quantity, location, and frequency of land use and land cover to appropriately assess environmental impacts on water pollution (France) and soil erosion (US). The results highlight opportunities for improvements in landscape modelling

    An Assessment of Change Vector Analysis Using Landsat Data Over Sioux Falls, South Dakota

    No full text
    The population of Sioux Falls, South Dakota has been steadily increasing from 72,468 in 1970 to 112,500 in 1995. This has resulted in a considerable amount of rural-to- urban land conversions occurring in the southwest and southeast regions of the city. Change detection methods have been developed to monitor these land cover changes and determine their extent. Change vector analysis is one of these methods being developed to study land cover change and to utilize the historical collection of multiresolution satellite data available. The change vector analysis procedure involves: (1) co-registering multiple dates of Landsat multispectral scanner (MSS) data, (2) formulating a signal-to-noise model, (3) radiometrically rectifying the images, (4) transforming the images to scene-based measures of brightness and greenness, (5) calculating change vectors from brightness and greenness, and (6) visualizing the change vectors. Change vector images were calculated for two time periods, 1973 to 1984 and 1984 to 1990. The change vector images were validated using 50 random samples collected for each change image. Of the 100 validation samples, 37 percent were classified as land use/land cover transitions and 63 percent were changes in the condition of an unchanging land use or land cover. Sixty percent of the land use/land cover transitions were rural-to-urban transitions. The change vector images were able to detect and characterize urban changes in terms of brightness and greenness

    The Driving Forces Of Land Change In The Northern Piedmont Of The United States

    Get PDF
    Driving forces facilitate or inhibit land-use / land-cover change. Human driving forces include political, economic, cultural, and social attributes that often change across time and space. Remotely sensed imagery provides regional land-change data for the Northern Piedmont, an ecoregion of the United States that continued to urbanize after 1970 through conversion of agricultural and forest land covers to developed uses. Eight major driving forces facilitated most of the land conversion; other drivers inhibited or slowed change. A synergistic web of drivers may be more important in understanding land change than individual drivers by themselves

    Land change variability and human–environment dynamics in the United States Great Plains

    Get PDF
    Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km × 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human–environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors

    Human drivers, biophysical changes, and climatic variation affecting contemporary cropping proportions in the northern prairie of the U.S

    No full text
    <p>Grassland to cropland conversion in the northern prairie of the United States has been a topic of recent land use change studies. Within this region more corn and soybeans are grown now (2017) than in the past, but most studies to date have not examined multi-decadal trends and the synergistic web of socio-ecological driving forces involved, opting instead for short-term analyses and easily targeted agents of change. This paper examines the coalescing of biophysical and socioeconomic driving forces that have brought change to the agricultural landscape of this region between 1980 and 2013. While land conversion has occurred, most of the region’s cropland in 2013 had been previously cropped by the early 1980s. Furthermore, the agricultural conditions in which crops were grown during those three decades have changed considerably because of non-biophysical alterations to production practices and changing agricultural markets. Findings revealed that human drivers played more of a role in crop change than biophysical changes, that blending quantitative and qualitative methods to tell a more complete story of crop change in this region was difficult because of the synergistic characteristics of the drivers involved, and that more research is needed to understand how farmers make crop choice decisions.</p
    corecore