24 research outputs found

    Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families

    Get PDF
    Metagenomics has made accessible an enormous reserve of global biochemical diversity. To tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. We have validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins. Three metagenomic enzymes exhibited lipase activity, and seven proteins showed polyester depolymerization activity against polylactic acid and polycaprolactone. Detailed biochemical characterization of four new enzymes revealed their substrate preference, whereas their catalytic residues were identified using site-directed mutagenesis. The crystal structure of the metal-ion dependent esterase MGS0169 from the amidohydrolase superfamily revealed a novel active site with a bound unknown ligand. Thus, activity-centered metagenomics has revealed diverse enzymes and novel families of microbial carboxylesterases, whose activity could not have been predicted using bioinformatics tools

    Pressure adaptation is linked to thermal adaptation in salt-saturated marine habitats

    Get PDF
    The present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040–4908 m depth), moderately warm (14.0–16.5°C) biotopes, characterized by a wide range of salinities (39–348 practical salinity units), were investigated for this purpose. An enzyme from a ‘superficial’ marine hydrothermal habitat (65°C) was isolated and characterized for comparative purposes. We report here the first experimental evidence suggesting that in saltsaturated deep-sea habitats, the adaptation to high pressure is linked to high thermal resistance (P value = 0.0036). Salinity might therefore increase the temperature window for enzyme activity, and possibly microbial growth, in deep-sea habitats. As an example, Lake Medee, the largest hypersaline deepsea anoxic lake of the Eastern Mediterranean Sea, where the water temperature is never higher than 16°C, was shown to contain halopiezophilic-like enzymes that are most active at 70°C and with denaturing temperatures of 71.4°C. The determination of the crystal structures of five proteins revealed unknown molecular mechanisms involved in protein adaptation to poly-extremes as well as distinct active site architectures and substrate preferences relative to other structurally characterized enzymes.European Community project MAMBA (FP7-KBBE-2008-226977). This grant BIO2011-25012 from the Spanish Ministry of Economy and Competitiveness (formerly MICINN). European Commission for ‘MicroB3’ grant (FP7-OCEAN.2011-2 (contract Nr 287589)). Government of Canada through Genome Canada and the Ontario Genomics Institute (grant 2009-OGI-ABC-1405) and U.S. National Institutes of Health (grants GM074942 and GM094585). Midwest Center for Structural Genomics).http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1462-2920hb2016Biochemistr

    Distinct Roles of Jasmonates and Aldehydes in Plant-Defense Responses

    Get PDF
    BACKGROUND: Many inducible plant-defense responses are activated by jasmonates (JAs), C(6)-aldehydes, and their corresponding derivatives, produced by the two main competing branches of the oxylipin pathway, the allene oxide synthase (AOS) and hydroperoxide lyase (HPL) branches, respectively. In addition to competition for substrates, these branch-pathway-derived metabolites have substantial overlap in regulation of gene expression. Past experiments to define the role of C(6)-aldehydes in plant defense responses were biased towards the exogenous application of the synthetic metabolites or the use of genetic manipulation of HPL expression levels in plant genotypes with intact ability to produce the competing AOS-derived metabolites. To uncouple the roles of the C(6)-aldehydes and jasmonates in mediating direct and indirect plant-defense responses, we generated Arabidopsis genotypes lacking either one or both of these metabolites. These genotypes were subsequently challenged with a phloem-feeding insect (aphids: Myzus persicae), an insect herbivore (leafminers: Liriomyza trifolii), and two different necrotrophic fungal pathogens (Botrytis cinerea and Alternaria brassicicola). We also characterized the volatiles emitted by these plants upon aphid infestation or mechanical wounding and identified hexenyl acetate as the predominant compound in these volatile blends. Subsequently, we examined the signaling role of this compound in attracting the parasitoid wasp (Aphidius colemani), a natural enemy of aphids. PRINCIPAL FINDINGS: This study conclusively establishes that jasmonates and C(6)-aldehydes play distinct roles in plant defense responses. The jasmonates are indispensable metabolites in mediating the activation of direct plant-defense responses, whereas the C(6)-aldehyes are not. On the other hand, hexenyl acetate, an acetylated C(6)-aldehyde, is the predominant wound-inducible volatile signal that mediates indirect defense responses by directing tritrophic (plant-herbivore-natural enemy) interactions. SIGNIFICANCE: The data suggest that jasmonates and hexenyl acetate play distinct roles in mediating direct and indirect plant-defense responses. The potential advantage of this "division of labor" is to ensure the most effective defense strategy that minimizes incurred damages at a reduced metabolic cost

    Novel Photosensitizers Trigger Rapid Death of Malignant Human Cells and Rodent Tumor Transplants via Lipid Photodamage and Membrane Permeabilization

    Get PDF
    BACKGROUND: Apoptotic cascades may frequently be impaired in tumor cells; therefore, the approaches to circumvent these obstacles emerge as important therapeutic modalities. METHODOLOGY/PRINCIPAL FINDINGS: Our novel derivatives of chlorin e(6), that is, its amide (compound 2) and boronated amide (compound 5) evoked no dark toxicity and demonstrated a significantly higher photosensitizing efficacy than chlorin e(6) against transplanted aggressive tumors such as B16 melanoma and M-1 sarcoma. Compound 5 showed superior therapeutic potency. Illumination with red light of mammalian tumor cells loaded with 0.1 ÂľM of 5 caused rapid (within the initial minutes) necrosis as determined by propidium iodide staining. The laser confocal microscopy-assisted analysis of cell death revealed the following order of events: prior to illumination, 5 accumulated in Golgi cysternae, endoplasmic reticulum and in some (but not all) lysosomes. In response to light, the reactive oxygen species burst was concomitant with the drop of mitochondrial transmembrane electric potential, the dramatic changes of mitochondrial shape and the loss of integrity of mitochondria and lysosomes. Within 3-4 min post illumination, the plasma membrane became permeable for propidium iodide. Compounds 2 and 5 were one order of magnitude more potent than chlorin e(6) in photodamage of artificial liposomes monitored in a dye release assay. The latter effect depended on the content of non-saturated lipids; in liposomes consisting of saturated lipids no photodamage was detectable. The increased therapeutic efficacy of 5 compared with 2 was attributed to a striking difference in the ability of these photosensitizers to permeate through hydrophobic membrane interior as evidenced by measurements of voltage jump-induced relaxation of transmembrane current on planar lipid bilayers. CONCLUSIONS/SIGNIFICANCE: The multimembrane photodestruction and cell necrosis induced by photoactivation of 2 and 5 are directly associated with membrane permeabilization caused by lipid photodamage

    Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica

    Get PDF
    M.K. and P.N.G. designed the work; T.N.C. performed physiological studies; M.K., M.F., Y.A.-R., A.B., N.L.-C., M.E.G., O.R.K., T.Y.N., S.K., I.L., O.V.G., M.M.Y. R.R. and P.N.G. were associated with genome annotation; H.J.H. performed lipids and FAME analysis; M.F., M-l.F., S.J., S.C. and J.P.A performed chaperonin anti-proteome analysis; A.-x. S., O.K., O.E., P.A.P., P.S. and Y.K. were associated with structural proteomics; A.T. and R.F. were associated with functional proteomics; H.L. performed electron microscopy; R.D. performed real-time PCR; M.M.-G. and M.F. performed DIGE proteome analysis; M.G. was involved in siderophore production; O.N.R. performed genomic islands’ analysis; H.T. performed storage lipid compounds’ analysis; P.N.G. coordinated manuscript writing.Accession Codes: The genome sequence of Oleispira antarctica RB-8 has been deposited in GenBank under accession core FO203512. Protein structures have deposited in PDB under accession codes 3QVM (a/b hydrolase, OLEAN_C08020), 3QVQ (phosphodiesterase, OLEAN_C20330), 3M16 (transaldolase, OLEAN_C18160), 3LQY (isochorismatase, OLEAN_C07660), 3LNP (amidohydrolase, OLEAN_C13880), 3V77/3L53 (fumarylacetoacetate isomerase/hydrolase, OLEAN_C35840), 3VCR/3LAB (2-keto-3-deoxy-6-phosphogluconate aldolase, OLEAN_C25130), 3IRU (phoshonoacetaldehyde hydrolase, OLEAN_C33610), 3I4Q (inorganic pyrophosphatase, OLEAN_C30460), 3LMB (protein with unknown function, OLEAN_C10530).Ubiquitous bacteria from the genus Oleispira drive oil degradation in the largest environment on Earth, the cold and deep sea. Here we report the genome sequence of Oleispira antarctica and show that compared with Alcanivorax borkumensis—the paradigm of mesophilic hydrocarbonoclastic bacteria—O. antarctica has a larger genome that has witnessed massive gene-transfer events. We identify an array of alkane monooxygenases, osmoprotectants, siderophores and micronutrient-scavenging pathways. We also show that at low temperatures, the main protein-folding machine Cpn60 functions as a single heptameric barrel that uses larger proteins as substrates compared with the classical double-barrel structure observed at higher temperatures. With 11 protein crystal structures, we further report the largest set of structures from one psychrotolerant organism. The most common structural feature is an increased content of surface-exposed negatively charged residues compared to their mesophilic counterparts. Our findings are relevant in the context of microbial cold-adaptation mechanisms and the development of strategies for oil-spill mitigation in cold environments.We acknowledge the funding from the EU Framework Program 7 to support Projects MAMBA (226977), ULIXES (266473), MAGIC PAH (245226) and MICROB3 (287589) This work received the support of the Government of Canada through Genome Canada and the Ontario Genomics Institute (grant 2009-OGI-ABC-1405 to A.F.Y. and A.S.), and the U.S. Government National Institutes of Health (grants GM074942 and GM094585 (to A.S. through Midwest Center for Structural Genomics). The study was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft through project KU 2679/2-1 and BU 890/21-1. We thank the sequencing team of the AG Reinhardt for technical assistance and Alfred Beck for computational support. The skilful work of electron microscopic sample preparation by Mrs. Ingeborg Kristen (Dept. VAM, HZI Braunschweig) is gratefully acknowledged. Authors thank Professor Ken Timmis for his critical reading the manuscript and useful comments.http://www.nature.com/naturecommunicationsam201

    Fundamental social motives measured across forty-two cultures in two waves

    Get PDF
    How does psychology vary across human societies? The fundamental social motives framework adopts an evolutionary approach to capture the broad range of human social goals within a taxonomy of ancestrally recurring threats and opportunities. These motives—self-protection, disease avoidance, affiliation, status, mate acquisition, mate retention, and kin care—are high in fitness relevance and everyday salience, yet understudied cross-culturally. Here, we gathered data on these motives in 42 countries (N = 15,915) in two cross-sectional waves, including 19 countries (N = 10,907) for which datawere gathered in both waves. Wave 1 was collected from mid-2016 through late 2019 (32 countries, N = 8,998; 3,302 male, 5,585 female; Mage = 24.43, SD = 7.91). Wave 2 was collected from April through November 2020, during the COVID-19 pandemic (29 countries, N = 6,917; 2,249 male, 4,218 female; Mage = 28.59, SD = 11.31). These data can be used to assess differences and similarities in people’s fundamental social motives both across and within cultures, at different time points, and in relation to other commonly studied cultural indicators and outcomes

    EFFICIENCY OF USING THE ADAPTED GOAT’S MILK FORMULA IN THE DIET OF HEALTHY YOUNG INFANTS: A MULTICENTER PROSPECTIVE COMPARATIVE STUDY

    No full text
    Background. There is no doubt that it is necessary to study the efficiency of milk formulas that are introduced into the Russian market of baby food. This applies to both new products and known brands of formulas whose composition is subject to change.Objective. Our aim was to assess the clinical efficacy of the adapted goat's milk formula in the diet of young infants.Methods. We conducted a prospective comparative study with healthy full-term  children aged 0–5 months being on a formula (main group) or breast feeding (comparison group). The tolerability of the adapted goat's milk formula, the dynamics of anthropometric indicators, changes in body composition as well as microscopic characteristics  of stool and general clinical and biochemical parameters  of peripheral blood were assessed after 1 month.Results. Good tolerability of the goat's milk formula was noted in 184 (96.8%) of 190 children in the main group. In the course of taking the product, the proportion of children with functional disorders of the gastrointestinal tract decreased significantly from 57 (30%) to 27 (14%) (p < 0.001). Physical development,  complete blood count results, the levels of ferritin, prealbumin and 25(OH)D in children of the main group and the comparison group (n = 71) were comparable and were within the mean age parameters. Qualitative analysis of the level of specific IgE to goat's milk proteins did not reveal any sensibilization in any of the children receiving the milk formula, either at the beginning of the study or after 1 month of taking the product.Conclusion. The studied adapted goat's milk formula can be used in nutrition of young infants in cases of lack or absence of mother's milk
    corecore