14 research outputs found

    Anaerobic radical enzymes for biotechnology

    Get PDF
    Enzymes that proceed through radical intermediates have a rich chemistry that includes functionalisation of otherwise unreactive carbon atoms, carbon-skeleton rearrangements, aromatic reductions, and unusual eliminations. Especially under anaerobic conditions, organisms have developed a wide range of approaches for managing these transformations that can be exploited to generate new biological routes towards both bulk and specialty chemicals. These routes are often either much more direct or allow access to molecules that are inaccessible through standard (bio)chemical approaches. This review gives an overview of some of the key enzymes in this area: benzoyl-CoA reductases (that effect the enzymatic Birch reduction), ketyl radical dehydratases, coenzyme B12-dependant enzymes, glycyl radical enzymes, and radical SAM (AdoMet radical) enzymes. These enzymes are discussed alongside biotechnological applications, highlighting the wide range of actual and potential uses. With the increased diversity in biotechnological approaches to obtaining these enzymes and information about them, even more of these amazing enzymes can be expected to find application in industrial processes

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Synthesis of deguelin–biotin conjugates and investigation into deguelin’s interactions

    No full text
    Deguelin, a rotenoid, has emerged as an attractive pharmacophore for chemoprevention showing in vivo activity in several xenografts. Recently, several lines of evidence have suggested its mode of action may involve inhibition of HSP90, however binding in a different mode than known pharmacophores. To further probe the target of deguelin and related rotenoids, several biotin conjugates were prepared. None of the conjugates showed significant affinity for HSP90, however two conjugates showed a strong cellular co-localization with mitochondria, consistent with binding to mitochondrial complex 1. Contrarily to rotenone, deguelin and tephrosin were not found to inhibit tubulin polymerization demonstrating a dramatic pharmacological difference between these closely related rotenoids

    Dividing cells regulate their lipid composition and localization

    Get PDF
    SummaryAlthough massive membrane rearrangements occur during cell division, little is known about specific roles that lipids might play in this process. We report that the lipidome changes with the cell cycle. LC-MS-based lipid profiling shows that 11 lipids with specific chemical structures accumulate in dividing cells. Using AFM, we demonstrate differences in the mechanical properties of live dividing cells and their isolated lipids relative to nondividing cells. In parallel, systematic RNAi knockdown of lipid biosynthetic enzymes identified enzymes required for division, which highly correlated with lipids accumulated in dividing cells. We show that cells specifically regulate the localization of lipids to midbodies, membrane-based structures where cleavage occurs. We conclude that cells actively regulate and modulate their lipid composition and localization during division, with both signaling and structural roles likely. This work has broader implications for the active and sustained participation of lipids in basic biology

    Oshkosh Scholar

    No full text
    A journal of UW Oshkosh undergraduate researc
    corecore