23 research outputs found

    Review of Aircraft Engine Health Monitoring Systems

    Get PDF
    Aircraft engine is one of the most complex systems demanding efficient monitoring for safe operation and timely maintenance of the aircraft. A survey of the aircraft engine health monitoring / management (EHM) systems available in the literature is presented in this report. Attempt has been made to identify distinct systems and methodologies available at present for the aircraft engines. This will provide a good basis towards the engine health monitoring research initiated at NAL under a NPMASS sponsored project. Detailed review of gas turbine engine health management systems and related literatures has been presented. Attempt has been made to understand future requirements of the advance sensors for intelligent aero engine from EHM perspective

    Data_Sheet_1_Antagonistic properties of Lactiplantibacillus plantarum MYSVB1 against Alternaria alternata: a putative probiotic strain isolated from the banyan tree fruit.docx

    No full text
    Alternaria alternata, a notorious phytopathogenic fungus, has been documented to infect several plant species, leading to the loss of agricultural commodities and resulting in significant economic losses. Lactic acid bacteria (LAB) hold immense promise as biocontrol candidates. However, the potential of LABs derived from fruits remains largely unexplored. In this study, several LABs were isolated from tropical fruit and assessed for their probiotic and antifungal properties. A total of fifty-five LABs were successfully isolated from seven distinct fruits. Among these, seven isolates showed inhibition to growth of A. alternata. Two strains, isolated from fruits: Ficus benghalensis, and Tinospora cordifolia exhibited promising antifungal properties against A. alternata. Molecular identification confirmed their identities as Lactiplantibacillus plantarum MYSVB1 and MYSVA7, respectively. Both strains showed adaptability to a wide temperature range (10–45°C), and salt concentrations (up to 7%), with optimal growth around 37 °C and high survival rates under simulated gastrointestinal conditions. Among these two strains, Lpb. plantarum MYSVB1 demonstrated significant inhibition (p 70% and complete inhibition by 10% CFS. Moreover, the CFS was inhibitory for both mycelial growth and conidial germination. CFS retained its activity even after long cold storage. The chromatographic analysis identified organic acids in CFS, with succinic acid as the predominant constituent, with lactic acid, and malic acid in descending order. LAB strains isolated from tropical fruits showed promising probiotic and antifungal properties, making them potential candidates for various applications in food and agriculture.</p

    Robust image adaptive steganography using integer wavelets

    No full text
    Information-Theoretic Analysis for Parallel Gaussian Models of Images prescribe embedding the secret data in low and mid frequency regions of image which have large energies. In this paper, we propose a novel steganographic scheme called Robust Image Adaptive Steganography using Integer Wavelet Transform(RIASlWT), which is a practical realization of these prescriptions. Using this scheme we can hide large volumes of data without causing any perceptual degradation of the cover image. The scheme embeds the payload in every non-overlapping 4x4 blocks of the low frequency band of cover image, two pixels at a time, one on either sides of the principal diagonal. Tests for the similarity between the Condition Number of the cover image and the stego image are done for further embedding. We also perform cover image adjustment before embedding the payload in order to ensure lossless recovery. Embedding done in the low frequency bands ensures robustness against attacks such as compression and filtering. Experimental results show better trade off between Visual perceptivity and capacity compared to the existing algorithms

    Performance Evaluation of a Pilot-Scale Aerobic Granular Sludge Integrated with Gravity-Driven Membrane System Treating Domestic Wastewater

    No full text
    This study describes a novel integration of aerobic granular sludge (AGS) with a gravity-driven membrane (GDM) system at a pilot scale with a treatment capacity of approximately 150 L per day to treat raw domestic wastewater. The treatment performance and energy consumption of the AGS-GDM system were compared to the neighboring full-scale aerobic membrane bioreactor (AeMBR), treating the same wastewater at about 4000(±500) m3 per day. The AGS-GDM system demonstrated superior nutrient (nitrogen and phosphorus) removal as compared to the AeMBR. The GDM unit was continuously supplied with AGS-treated effluent. The GDM unit started with high [ &gt;20 L per m2 per h (LMH) ] flux, which gradually declined. The flux remained quite stable after 15 days reaching 3 LMH after 35 days without any physical or chemical cleaning. Our results suggest that AGS-GDM is a viable technology for decentralized wastewater treatment and reuse in water-scarce regions. The AGS-GDM could easily replace conventional AeMBR technology in the wastewater treatment and reclamation market.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/Environmental Biotechnolog
    corecore