44 research outputs found

    Stearic acid, beeswax and carnauba wax as green raw materials for the loading of carvacrol into nanostructured lipid carriers

    Get PDF
    The use of lipid nanoparticles as drug delivery systems has been growing over recent decades. Their biodegradable and biocompatible profile, capacity to prevent chemical degradation of loaded drugs/actives and controlled release for several administration routes are some of their advantages. Lipid nanoparticles are of particular interest for the loading of lipophilic compounds, as happens with essential oils. Several interesting properties, e.g., anti-microbial, antitumoral and antioxidant activities, are attributed to carvacrol, a monoterpenoid phenol present in the composition of essential oils of several species, including Origanum vulgare, Thymus vulgaris, Nigellasativa and Origanum majorana. As these essential oils have been proposed as the liquid lipid in the composition of nanostructured lipid carriers (NLCs), we aimed at evaluating the influence of carvacrol on the crystallinity profile of solid lipids commonly in use in the production of NLCs. Different ratios of solid lipid (stearic acid, beeswax or carnauba wax) and carvacrol were prepared, which were then subjected to thermal treatment to mimic the production of NLCs. The obtained binary mixtures were then characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and polarized light microscopy (PLM). The increased concentration of monoterpenoid in the mixtures resulted in an increase in the mass loss recorded by TG, together with a shift of the melting point recorded by DSC to lower temperatures, and the decrease in the enthalpy in comparison to the bulk solid lipids. The miscibility of carvacrol with the melted solid lipids was also confirmed by DSC in the tested concentration range. The increase in carvacrol content in the mixtures resulted in a decrease in the crystallinity of the solid bulks, as shown by SAXS and PLM. The decrease in the crystallinity of lipid matrices is postulated as an advantage to increase the loading capacity of these carriers. Carvacrol may thus be further exploited as liquid lipid in the composition of green NLCs for a range of pharmaceutical applications.This work was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil, FinanceCode 001), by the Portuguese Science and Technology Foundation (FCT/MCT) and European Funds (PRODER/COMPETE) under the projects M-ERA-NET/0004/2015 and UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio

    Characterization of Siloxane-poly(methyl methacrylate) Hybrid Films Obtained on a Tinplate Substrate Modified by the Addition of Organic and Inorganic Acids

    Get PDF
    Tinplate is used to food packaging and other types of packages. The corrosion resistance of the tinplate has been study due the necessity of an alternative to high environmental impact of chromatization process. Therefore protective coatings as hybrid films base elaborations with different acids are studied to improve the barrier effect against corrosion. The objective of this work is characterize hybrid films deposited on a tinplate from a sol made up of the alkoxide precursors 3-(trimethoxysilylpropyl) methacrylate (TMSM), tetraethoxysilane (TEOS) and poly(methyl methacrylate) (PMMA) together with one of three acids (acetic, hydrochloric or nitric acid) and to verify their action against the corrosion of the substrate. The films were obtained by a dip-coating process and cured for 3 hours at 160 °C. The film hydrophobicity was determined by contact angle measurements, and the morphology was evaluated by SEM. FTIR measurements were performed to characterize the chemical structures of the films. The electrochemical behavior of the coatings was evaluated by techniques open circuit potential monitoring (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results demonstrate that the siloxane-PMMA films improve the protective properties of the tinplate, with the films obtained by acetic acid addition exhibiting the greatest improvement

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe

    Development and In Vitro Evaluation of Surfactant Systems for Controlled Release of Zidovudine

    No full text
    The development of a controlled-release dosage form of zidovudine (AZT) is of crucial importance, in view of the pharmacokinetics of its toxic activity. A suitable drug delivery system could increase AZT bioavailability, reducing its dose-dependent side effects. In this study, systems composed of polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol as surfactant (S), oleic acid as oil phase (O), and water (W) were developed, as possible AZT control release systems. They were characterized by polarized light microscopy (PLM), SAXS, and rheological analysis, followed by in vitro release assay. PLM and SAXS results indicated that the mixtures of S/O/W in the proportions 55/35/10 and 55/25/20 formed microemulsion (ME) systems, while 55/20/25 formed lamellar phase. The incorporation of AZT in these systems was greater than in water or oil; moreover. AZT incorporation did not significantly change the phase behavior of the mixtures. MEs behave as Newtonian fluids in flow rheological analysis and the lamellar phase as a pseudoplastic fluid. The release profile indicated that AZT could be released in a controlled manner, since an exponential pattern governs AZT diffusion, as demonstrated by the Weibull mathematical model. These systems are potential carriers for AZT and could have advantages over conventional pharmaceutical forms. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:2367-2374, 2010Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Green Extraction of Annatto Seed Oily Extract and Its Use as a Pharmaceutical Material for the Production of Lipid Nanoparticles

    No full text
    This work developd nanomaterials formulated from annatto seed oily extract (ASE), myristic acid (tetradecanoic acid), and their fatty acid esters. The annatto seed oily extract was obtained using only soybean oil (ASE + SO) and Brazil nut oil (ASE + BNO). The UV/VIS analysis of the oily extracts showed three characteristic peaks of the bixin molecule at 430, 456 and 486 nm. The lipid nanoparticles obtained using myristic acid and ASE + BNO or only BNO showed better results than the oil soybean extract, i.e., the particle size was <200 nm, PDI value was in the range of 0.2–0.3, and had no visual physical instability as they kept stable for 28 days at 4 °C. Lipid nanoemulsions were also produced with esters of myristic acid and ASE + BNO. These fatty acid esters significantly influenced the particle size of nanoemulsions. For instance, methyl tetradecanoate led to the smallest particle size nanoemulsions (124 nm), homogeneous size distribution, and high physical stability under 4 and 32 °C for 28 days. This work demonstrates that the chemical composition of vegetable oils and myristic acid esters, the storage temperature, the chain length of fatty acid esters (FAE), and their use as co-lipids improve the physical stability of lipid nanoemulsions and nanoparticles from annatto seed oily extract
    corecore