27 research outputs found

    Exchange anisotropy, disorder and frustration in diluted, predominantly ferromagnetic, Heisenberg spin systems

    Full text link
    Motivated by the recent suggestion of anisotropic effective exchange interactions between Mn spins in Ga1−x_{1-x}Mnx_xAs (arising as a result of spin-orbit coupling), we study their effects in diluted Heisenberg spin systems. We perform Monte Carlo simulations on several phenomenological model spin Hamiltonians, and investigate the extent to which frustration induced by anisotropic exchanges can reduce the low temperature magnetization in these models and the interplay of this effect with disorder in the exchange. In a model with low coordination number and purely ferromagnetic (FM) exchanges, we find that the low temperature magnetization is gradually reduced as exchange anisotropy is turned on. However, as the connectivity of the model is increased, the effect of small-to-moderate anisotropy is suppressed, and the magnetization regains its maximum saturation value at low temperatures unless the distribution of exchanges is very wide. To obtain significant suppression of the low temperature magnetization in a model with high connectivity, as is found for long-range interactions, we find it necessary to have both ferromagnetic and antiferromagnetic (AFM) exchanges (e.g. as in the RKKY interaction). This implies that disorder in the sign of the exchange interaction is much more effective in suppressing magnetization at low temperatures than exchange anisotropy.Comment: 9 pages, 8 figure

    Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm

    Full text link
    In this paper a new hybrid glowworm swarm algorithm (SAGSO) for solving structural optimization problems is presented. The structure proposed to be optimized here is a simply-supported concrete I-beam defined by 20 variables. Eight different concrete mixtures are studied, varying the compressive strength grade and compacting system. The solutions are evaluated following the Spanish Code for structural concrete. The algorithm is applied to two objective functions, namely the embedded CO2 emissions and the economic cost of the structure. The ability of glowworm swarm optimization (GSO) to search in the entire solution space is combined with the local search by Simulated Annealing (SA) to obtain better results than using the GSO and SA independently. Finally, the hybrid algorithm can solve structural optimization problems applied to discrete variables. The study showed that large sections with a highly exposed surface area and the use of conventional vibrated concrete (CVC) with the lower strength grade minimize the CO2 emissionsGarcía Segura, T.; Yepes Piqueras, V.; Martí Albiñana, JV.; Alcalå Gonzålez, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures. 11(7):1190-1205. doi:10.1590/S1679-78252014000700007S11901205117Alinia Ahandani, M., Vakil Baghmisheh, M. T., Badamchi Zadeh, M. A., & Ghaemi, S. (2012). Hybrid particle swarm optimization transplanted into a hyper-heuristic structure for solving examination timetabling problem. Swarm and Evolutionary Computation, 7, 21-34. doi:10.1016/j.swevo.2012.06.004Chen, S.-M., Sarosh, A., & Dong, Y.-F. (2012). Simulated annealing based artificial bee colony algorithm for global numerical optimization. Applied Mathematics and Computation, 219(8), 3575-3589. doi:10.1016/j.amc.2012.09.052Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549-556. doi:10.1007/s11367-010-0191-4Dutta, R., Ganguli, R., & Mani, V. (2011). Swarm intelligence algorithms for integrated optimization of piezoelectric actuator and sensor placement and feedback gains. Smart Materials and Structures, 20(10), 105018. doi:10.1088/0964-1726/20/10/105018Fan, S.-K. S., & Zahara, E. (2007). A hybrid simplex search and particle swarm optimization for unconstrained optimization. European Journal of Operational Research, 181(2), 527-548. doi:10.1016/j.ejor.2006.06.034García-Segura, T., Yepes, V., & Alcalå, J. (2013). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3-12. doi:10.1007/s11367-013-0614-0Gong, Q. Q., Zhou, Y. Q., & Yang, Y. (2010). Artificial Glowworm Swarm Optimization Algorithm for Solving 0-1 Knapsack Problem. Advanced Materials Research, 143-144, 166-171. doi:10.4028/www.scientific.net/amr.143-144.166Hare, W., Nutini, J., & Tesfamariam, S. (2013). A survey of non-gradient optimization methods in structural engineering. Advances in Engineering Software, 59, 19-28. doi:10.1016/j.advengsoft.2013.03.001He, S., Prempain, E., & Wu, Q. H. (2004). An improved particle swarm optimizer for mechanical design optimization problems. Engineering Optimization, 36(5), 585-605. doi:10.1080/03052150410001704854Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687-697. doi:10.1016/j.asoc.2007.05.007Khan, K., & Sahai, A. (2012). A Glowworm Optimization Method for the Design of Web Services. International Journal of Intelligent Systems and Applications, 4(10), 89-102. doi:10.5815/ijisa.2012.10.10Kicinger, R., Arciszewski, T., & Jong, K. D. (2005). Evolutionary computation and structural design: A survey of the state-of-the-art. Computers & Structures, 83(23-24), 1943-1978. doi:10.1016/j.compstruc.2005.03.002Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Koide, R. M., França, G. von Z. de, & Luersen, M. A. (2013). An ant colony algorithm applied to lay-up optimization of laminated composite plates. Latin American Journal of Solids and Structures, 10(3), 491-504. doi:10.1590/s1679-78252013000300003Krishnanand, K. N., & Ghose, D. (2009). Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93. doi:10.1504/ijcistudies.2009.025340Li, L. J., Huang, Z. B., & Liu, F. (2009). A heuristic particle swarm optimization method for truss structures with discrete variables. Computers & Structures, 87(7-8), 435-443. doi:10.1016/j.compstruc.2009.01.004Liao, W.-H., Kao, Y., & Li, Y.-S. (2011). A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks. Expert Systems with Applications, 38(10), 12180-12188. doi:10.1016/j.eswa.2011.03.053Luo, Q. F., & Zhang, J. L. (2011). Hybrid Artificial Glowworm Swarm Optimization Algorithm for Solving Constrained Engineering Problem. Advanced Materials Research, 204-210, 823-827. doi:10.4028/www.scientific.net/amr.204-210.823Martí, J. V., Gonzalez-Vidosa, F., Yepes, V., & Alcalå, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48, 342-352. doi:10.1016/j.engstruct.2012.09.014Martinez-Martin, F. J., Gonzalez-Vidosa, F., Hospitaler, A., & Yepes, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6), 723-740. doi:10.12989/sem.2013.45.6.723Medina, J. R. (2001). Estimation of Incident and Reflected Waves Using Simulated Annealing. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(4), 213-221. doi:10.1061/(asce)0733-950x(2001)127:4(213)Parsopoulos, K. E., & Vrahatis, M. N. (2002). Natural Computing, 1(2/3), 235-306. doi:10.1023/a:1016568309421Paya-Zaforteza, I., Yepes, V., Gonzålez-Vidosa, F., & Hospitaler, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5), 693-704. doi:10.1007/s11012-010-9285-0Sarma, K. C., & Adeli, H. (1998). Cost Optimization of Concrete Structures. Journal of Structural Engineering, 124(5), 570-578. doi:10.1061/(asce)0733-9445(1998)124:5(570)Shieh, H.-L., Kuo, C.-C., & Chiang, C.-M. (2011). Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Applied Mathematics and Computation, 218(8), 4365-4383. doi:10.1016/j.amc.2011.10.012Sideris, K. K., & Anagnostopoulos, N. S. (2013). Durability of normal strength self-compacting concretes and their impact on service life of reinforced concrete structures. Construction and Building Materials, 41, 491-497. doi:10.1016/j.conbuildmat.2012.12.042Valdez, F., Melin, P., & Castillo, O. (2011). An improved evolutionary method with fuzzy logic for combining Particle Swarm Optimization and Genetic Algorithms. Applied Soft Computing, 11(2), 2625-2632. doi:10.1016/j.asoc.2010.10.010Wang, H., Sun, H., Li, C., Rahnamayan, S., & Pan, J. (2013). Diversity enhanced particle swarm optimization with neighborhood search. Information Sciences, 223, 119-135. doi:10.1016/j.ins.2012.10.012Yepes, V., Gonzalez-Vidosa, F., Alcala, J., & Villalba, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls Based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering, 26(3), 378-386. doi:10.1061/(asce)cp.1943-5487.000014

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Prototyping Direction Optimization of Points Data Oriented Rapid Prototyping Based on Genetic Algorithm

    No full text

    Not Available

    No full text
    Not AvailableEffect of feeding complete feed block based on unconventional feeds on growth performance and nutrient utilization of yak calves.Not Availabl
    corecore