37 research outputs found

    Contract Unconscionability in India

    Get PDF

    Atmospheric abundances of nitrogen species in rain and aerosols over a semi-arid region: sources and deposition fluxes

    Get PDF
    The temporal variation for a three-year period (2000-2002) in the atmospheric abundances of principal nitrogen species (NH4+ and NO3-) has been studied in rain and aerosols from an urban city (Ahmedabad, 23.0°N, 72.6°E) located in a semi-arid region of western India. Their concentrations in ambient aerosols over the annual seasonal cycle exhibit large variation [NH4+: < 0.001 to 1.3 (GM = 0.25 µ g/m3); NO3-: 0.09 to 4.4 (GM = 1.3 µ g/m3)]; with systematically higher concentrations during Nov-Feb (drier period) and relatively low during Jun-Aug (wet season). In comparison, abundances of NH4+ and NO3- in individual precipitation events (n = 91) collected during the southwest monsoon (Jun-Aug) for three years varied as NH4+: <1.0 to 220 (VWM: 30 µ eq/L) and NO3-: 1.3 to 115 (VWM: 13 µ eq/L). Using corresponding rainfall data, the wet-deposition fluxes of NH4+ during 2000, 2001 and 2002 have been derived: 364, 327 and 297 mg/m2/y, respectively; which are considerably higher than the dry-deposition fluxes (16, 11 and 16 mg/m2/y). The wet deposition of NO3- over the three years varied as 392, 569 and 487 mg/m2/y in comparison to dry-deposition fluxes averaging as 201, 134 and 137 mg /m2/y. These results also indicate that both dry and wet deposition of NO3- accounts for as much as ~65% of the total inorganic-N species (NH4+ + NO3-), possibly mediated via in-situ chemical reactions of acidic species (NO3- and its precursors) with mineral aerosols. Such regional scale studies are important for quantitative assessment of atmospheric deposition of biogeochemically important trace species and bring to focus the role of semi-arid regions where current knowledge is limited

    Anthropogenic nitrogen inputs and impacts on oceanic N2O fluxes in the northern Indian Ocean: The need for an integrated observation and modelling approach

    Get PDF
    Anthropogenically-derived nitrogen input to the northern Indian Ocean has increased significantly in recent decades, based on both observational and model-derived estimates This external nutrient source is supplied by atmospheric deposition and riverine fluxes, and has the potential to affect the vulnerable biogeochemical systems of the Arabian Sea and Bay of Bengal, influencing productivity and oceanic production of the greenhouse-gas nitrous-oxide (N2O). We summarize current estimates of this external nitrogen source to the northern Indian Ocean from observations and models, highlight implications for regional marine N2O emissions using model-based analyses, and make recommendations for measurement and model needs to improve current estimates and future predictions of this impact. Current observationally-derived estimates of deposition and riverine nitrogen inputs are limited by sparse measurements and uncertainties on accurate characterization of nitrogen species composition. Ocean model assessments of the impact of external nitrogen sources on regional marine N2O production in the northern Indian Ocean estimate potentially significant changes but also have large associated uncertainties. We recommend an integrated program of basin-wide measurements combined with high-resolution modeling and more detailed characterization of nitrogen-cycle process to address these uncertainties and improve current estimates and predictions

    An assessment of the use of sediment traps for estimating upper ocean particle fluxes

    Get PDF
    Author Posting. © Sears Foundation for Marine Research, 2007. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 65 (2007): 345–416, doi: 10.1357/002224007781567621This review provides an assessment of sediment trap accuracy issues by gathering data to address trap hydrodynamics, the problem of zooplankton "swimmers," and the solubilization of material after collection. For each topic, the problem is identified, its magnitude and causes reviewed using selected examples, and an update on methods to correct for the potential bias or minimize the problem using new technologies is presented. To minimize hydrodynamic biases due to flow over the trap mouth, the use of neutrally buoyant sediment traps is encouraged. The influence of swimmers is best minimized using traps that limit zooplankton access to the sample collection chamber. New data on the impact of different swimmer removal protocols at the US time-series sites HOT and BATS are compared and shown to be important. Recent data on solubilization are compiled and assessed suggesting selective losses from sinking particles to the trap supernatant after collection, which may alter both fluxes and ratios of elements in long term and typically deeper trap deployments. Different methods are needed to assess shallow and short- term trap solubilization effects, but thus far new incubation experiments suggest these impacts to be small for most elements. A discussion of trap calibration methods reviews independent assessments of flux, including elemental budgets, particle abundance and flux modeling, and emphasizes the utility of U-Th radionuclide calibration methods.WG meetings and production of this report was partially supported by the U.S. National Science Foundation via grants to the SCOR. Individuals and science efforts discussed herein were supported by many national science programs, including the U.S. National Science Foundation, Swedish Research Council, the International Atomic Energy Agency through its support of the Marine Environmental Laboratory that also receives support from the Government of the Principality of Monaco, and the Australian Antarctic Science Program. K.B. was supported in part by a WHOI Ocean Life Institute Fellowship

    Atmospheric Organic Material and the Nutrients Nitrogen and Phosphorus It Carries to the Ocean

    Get PDF
    [1] The global tropospheric budget of gaseous and particulate non‐methane organic matter (OM) is re‐examined to provide a holistic view of the role that OM plays in transporting the essential nutrients nitrogen and phosphorus to the ocean. A global 3‐dimensional chemistry‐transport model was used to construct the first global picture of atmospheric transport and deposition of the organic nitrogen (ON) and organic phosphorus (OP) that are associated with OM, focusing on the soluble fractions of these nutrients. Model simulations agree with observations within an order of magnitude. Depending on location, the observed water soluble ON fraction ranges from ∼3% to 90% (median of ∼35%) of total soluble N in rainwater; soluble OP ranges from ∼20–83% (median of ∼35%) of total soluble phosphorus. The simulations suggest that the global ON cycle has a strong anthropogenic component with ∼45% of the overall atmospheric source (primary and secondary) associated with anthropogenic activities. In contrast, only 10% of atmospheric OP is emitted from human activities. The model‐derived present‐day soluble ON and OP deposition to the global ocean is estimated to be ∼16 Tg‐N/yr and ∼0.35 Tg‐P/yr respectively with an order of magnitude uncertainty. Of these amounts ∼40% and ∼6%, respectively, are associated with anthropogenic activities, and 33% and 90% are recycled oceanic materials. Therefore, anthropogenic emissions are having a greater impact on the ON cycle than the OP cycle; consequently increasing emissions may increase P‐limitation in the oligotrophic regions of the world\u27s ocean that rely on atmospheric deposition as an important nutrient source

    Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans

    Get PDF
    Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3-) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ~2900 observations of aerosol NO3- and NH4+ concentrations, acquired from sampling aboard ships in the period 1995 - 2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes, however these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux are therefore very difficult to validate for dry deposition. Here the available observational data were averaged over a 5° x 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the TM4-ECPL (TM4) model: ModDep for NOy, NHx and particulate NO3- and NH4+, and surface-level particulate NO3- and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than TM4, while TM4 gives access to speciated parameters (NO3- and NH4+) that are more relevant to the observed parameters and which are not available in ACCMIP. Dry deposition fluxes (CalDep) were calculated from the observed concentrations using estimates of dry deposition velocities. Model – observation ratios, weighted by grid-cell area and numbers of observations, (RA,n) were used to assess the performance of the models. Comparison in the three study regions suggests that TM4 over-estimates NO3- concentrations (RA,n = 1.4 – 2.9) and under-estimates NH4+ concentrations (RA,n = 0.5 – 0.7), with spatial distributions in the tropical Atlantic and northern Indian Ocean not being reproduced by the model. In the case of NH4+ in the Indian Ocean, this discrepancy was probably due to seasonal biases in the sampling. Similar patterns were observed in the various comparisons of CalDep to ModDep (RA,n = 0.6 – 2.6 for NO3-, 0.6 – 3.1 for NH4+). Values of RA,n for NHx CalDep - ModDep comparisons were approximately double the corresponding values for NH4+ CalDep - ModDep comparisons due to the significant fraction of gas-phase NH3 deposition incorporated in the TM4 and ACCMIP NHx model products. All of the comparisons suffered due to the scarcity of observational data and the large uncertainty in dry deposition velocities used to derive deposition fluxes from concentrations. These uncertainties have been a major limitation on estimates of the flux of material to the oceans for several decades. Recommendations are made for improvements in N deposition estimation through changes in observations, modelling and model – observation comparison procedures. Validation of modelled dry deposition requires effective comparisons to observable aerosol-phase species concentrations and this cannot be achieved if model products only report dry deposition flux over the ocean

    Pyrogenic iron: The missing link to high iron solubility in aerosols

    Get PDF
    Atmospheric deposition is a source of potentially bioavailable iron (Fe) and thus can partially control biological productivity in large parts of the ocean. However, the explanation of observed high aerosol Fe solubility compared to that in soil particles is still controversial, as several hypotheses have been proposed to explain this observation. Here, a statistical analysis of aerosol Fe solubility estimated from four models and observations compiled from multiple field campaigns suggests that pyrogenic aerosols are the main sources of aerosols with high Fe solubility at low concentration. Additionally, we find that field data over the Southern Ocean display a much wider range in aerosol Fe solubility compared to the models, which indicate an underestimation of labile Fe concentrations by a factor of 15. These findings suggest that pyrogenic Fe-containing aerosols are important sources of atmospheric bioavailable Fe to the open ocean and crucial for predicting anthropogenic perturbations to marine productivity
    corecore