9 research outputs found

    Ion channels in control of pancreatic stellate cell migration

    Get PDF
    Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all “hallmarks of cancer” such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of K(Ca)3.1 channels in PSCs. K(Ca)3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of K(Ca)3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of K(Ca)3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2(+) concentration ([Ca(2+)](i)). K(Ca)3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca(2+)](i) and calpain activity. K(Ca)3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of K(Ca)3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology

    Real-time Imaging Reveals That P2Y(2) and P2Y(12) Receptor Agonists Are Not Chemoattractants and Macrophage Chemotaxis to Complement C5a Is Phosphatidylinositol 3-Kinase (PI3K)- and p38 Mitogen-activated Protein Kinase (MAPK)-independent

    No full text
    Adenosine 5'-triphosphate (ATP) has been implicated in the recruitment of professional phagocytes (neutrophils and macrophages) to sites of infection and tissue injury in two distinct ways. First, ATP itself is thought to be a chemotactic find me signal released by dying cells, and second, autocrine ATP signaling is implicated as an amplifier mechanism for chemotactic navigation to end-target chemoattractants, such as complement C5a. Here we show using real-time chemotaxis assays that mouse peritoneal macrophages do not directionally migrate to stable analogs of ATP (adenosine-5'-(gamma-thio)-triphosphate (ATP gamma S)) or its hydrolysis product ADP (adenosine-5'-(gamma-thio)-diphosphate (ADP beta S)). HPLC revealed that these synthetic P2Y(2) (ATP gamma S) and P2Y(12) (ADP gamma S) receptor ligands were in fact slowly degraded. We also found that ATP gamma S, but not ADP beta S, promoted chemokinesis (increased random migration). Furthermore, we found that photorelease of ATP or ADP induced lamellipodial membrane extensions. At the cell signaling level, C5a, but not ATP gamma S, activated Akt, whereas both ligands induced p38 MAPK activation. p38 MAPK and Akt activation are strongly implicated in neutrophil chemotaxis. However, we found that inhibitors of phosphatidylinositol 3-kinase (PI3K; upstream of Akt) and p38 MAPK(or conditional deletion of p38 alpha MAPK) did not impair macrophage chemotactic efficiency or migration velocity. Our results suggest that PI3K and p38 MAPK are redundant for macrophage chemotaxis and that purinergic P2Y(2) and P2Y(12) receptor ligands are not chemotactic. We propose that ATP signaling is strictly autocrine or paracrine and that ATP and ADP may act as short-range touch me (rather than long-range find me) signals to promote phagocytic clearance via cell spreading

    Autocrine purinergic receptor signaling is essential for macrophage chemotaxis.

    No full text
    Chemotaxis, the movement of cells along chemical gradients, is critical for the recruitment of immune cells to sites of inflammation; however, how cells navigate in chemotactic gradients is poorly understood. Here, we show that macrophages navigate in a gradient of the chemoattractant C5a through the release of adenosine triphosphate (ATP) and autocrine "purinergic feedback loops" that involve receptors for ATP (P2Y(2)), adenosine diphosphate (ADP) (P2Y(12)), and adenosine (A2a, A2b, and A3). Whereas macrophages from mice deficient in pannexin-1 (which is part of a putative ATP release pathway), P2Y(2), or P2Y(12) exhibited efficient chemotactic navigation, chemotaxis was blocked by apyrase, which degrades ATP and ADP, and by the inhibition of multiple purinergic receptors. Furthermore, apyrase impaired the recruitment of monocytes in a mouse model of C5a-induced peritonitis. In addition, we found that stimulation of P2Y(2), P2Y(12), or adenosine receptors induced the formation of lamellipodial membrane protrusions, causing cell spreading. We propose a model in which autocrine purinergic receptor signaling amplifies and translates chemotactic cues into directional motility.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Protonation of Piezo1 Impairs Cell-Matrix Interactions of Pancreatic Stellate Cells

    Full text link
    Pancreatic ductal adenocarcinoma (PDAC) is characterized by an acidic and fibrotic stroma. The extracellular matrix (ECM) causing the fibrosis is primarily formed by pancreatic stellate cells (PSCs). The effects of the altered biomechanics and pH landscape in the pathogenesis of PDAC, however, are poorly understood. Mechanotransduction in cells has been linked to the function of mechanosensitive ion channels such as Piezo1. Here, we tested whether this channel plays crucial roles in transducing mechanical signals in the acidic PDAC microenvironment. We performed immunofluorescence, Ca2+ influx and intracellular pH measurements in PSCs and complemented them by live-cell imaging migration experiments in order to assess the function of Piezo1 channels in PSCs. We evaluated whether Piezo1 responds to changes of extracellular and/or intracellular pH in the pathophysiological range (pH 6.6 and pH 6.9, respectively). We validated our results using Piezo1-transfected HEK293 cells as a model system. Indeed, acidification of the intracellular space severely inhibits Piezo1-mediated Ca2+ influx into PSCs. In addition, stimulation of Piezo1 channels with its activator Yoda1 accelerates migration of PSCs on a two-dimensional ECM as well as in a 3D setting. Furthermore, Yoda1-activated PSCs transmit more force to the surrounding ECM under physiological pH, as revealed by measuring the dislocation of microbeads embedded in the surrounding matrix. This is paralleled by an enhanced phosphorylation of myosin light chain isoform 9 after Piezo1 stimulation. Intriguingly, upon acidification, Piezo1 activation leads to the initiation of cell death and disruption of PSC spheroids. In summary, stimulating Piezo1 activates PSCs by inducing Ca2+ influx which in turn alters the cytoskeletal architecture. This results in increased cellular motility and ECM traction, which can be useful for the cells to invade the surroundings and to detach from the tissue. However, in the presence of an acidic extracellular pH, although net Ca2+ influx is reduced, Piezo1 activation leads to severe cell stress also limiting cellular viability. In conclusion, our results indicate a strong interdependence between environmental pH, the mechanical output of PSCs and stromal mechanics, which promotes early local invasion of PDAC cells

    Relevance of Abnormal KCNN1 Expression and Osmotic Hypersensitivity in Ewing Sarcoma

    No full text
    Ewing sarcoma (EwS) is a rare and highly malignant bone tumor occurring mainly in childhood and adolescence. Physiologically, the bone is a central hub for Ca2+ homeostasis, which is severely disturbed by osteolytic processes in EwS. Therefore, we aimed to investigate how ion transport proteins involved in Ca2+ homeostasis affect EwS pathophysiology. We characterized the expression of 22 candidate genes of Ca2+-permeable or Ca2+-regulated ion channels in three EwS cell lines and found the Ca2+-activated K+ channel KCa2.1 (KCNN1) to be exceptionally highly expressed. We revealed that KCNN1 expression is directly regulated by the disease-driving oncoprotein EWSR1-FL1. Due to its consistent overexpression in EwS, KCNN1 mRNA could be a prognostic marker in EwS. In a large cohort of EwS patients, however, KCNN1 mRNA quantity does not correlate with clinical parameters. Several functional studies including patch clamp electrophysiology revealed no evidence for KCa2.1 function in EwS cells. Thus, elevated KCNN1 expression is not translated to KCa2.1 channel activity in EwS cells. However, we found that the low K+ conductance of EwS cells renders them susceptible to hypoosmotic solutions. The absence of a relevant K+ conductance in EwS thereby provides an opportunity for hypoosmotic therapy that can be exploited during tumor surgery

    Protein tyrosine kinase regulation by ubiquitination: Critical roles of Cbl-family ubiquitin ligases

    No full text
    corecore