2,132 research outputs found

    The Interannual Relationship between the Latitude of the Eddy-Driven Jet and the Edge of the Hadley Cell

    Get PDF
    A strong correlation between the latitudes of the eddy-driven jet and of the Hadley cell edge, on interannual time scales, is found to exist during austral summer, in both the NCEP-NCAR reanalysis and the models participating in the Coupled Model Intercomparison Project, phase 3 (CMIP3). In addition, a universal ratio close to 1:2 characterizes the robust connection between these two latitudes on a year-to-year basis: for a 2 degrees shift of the eddy-driven jet, the edge of the Hadley cell shifts by 1 degrees. This 1:2 interannual ratio remains the same in response to climate change, even though the values of the two latitudes increase. The corresponding trends are also highly correlated; in the CMIP3 scenario integrations, however, no universal ratio appears to exist connecting these long-term trends. In austral winter and in the Northern Hemisphere, no strong interannual correlations are found.open252

    Uncertainty in Climate Change Projections of the Hadley Circulation: The Role of Internal Variability

    Get PDF
    The uncertainty arising from internal climate variability in climate change projections of the Hadley circulation (HC) is presently unknown. In this paper it is quantified by analyzing a 40-member ensemble of integrations of the Community Climate System Model, version 3 (CCSM3), under the Special Report on Emissions Scenarios (SRES) A1B scenario over the period 2000–60. An additional set of 100-yr-long time-slice integrations with the atmospheric component of the same model [Community Atmosphere Model, version 3.0 (CAM3)] is also analyzed. Focusing on simple metrics of the HC—its strength, width, and height—three key results emerge from the analysis of the CCSM3 ensemble. First, the projected weakening of the HC is almost entirely confined to the Northern Hemisphere, and is stronger in winter than in summer. Second, the projected widening of the HC occurs only in the winter season but in both hemispheres. Third, the projected rise of the tropical tropopause occurs in both hemispheres and in all seasons and is, by far, the most robust of the three metrics. This paper shows further that uncertainty in future trends of the HC width is largely controlled by extratropical variability, while those of HC strength and height are associated primarily with tropical dynamics. Comparison of the CCSM3 and CAM3 integrations reveals that ocean–atmosphere coupling is the dominant source of uncertainty in future trends of HC strength and height and of the tropical mean meridional circulation in general. Finally, uncertainty in future trends of the hydrological cycle is largely captured by the uncertainty in future trends of the mean meridional circulation

    Angular momentum evolution of bulge stars in disc galaxies in NIHAO

    Get PDF
    We study the origin of bulge stars and their angular momentum (AM) evolution in 10 spiral galaxies with baryonic masses above 101010^{10}M_\odot in the NIHAO galaxy formation simulations. The simulated galaxies are in good agreement with observations of the relation between specific AM and mass of the baryonic component and the stellar bulge-to-total ratio (B/TB/T). We divide the star particles at z=0z=0 into disc and bulge components using a hybrid photometric/kinematic decomposition method that identifies all central mass above an exponential disc profile as the `bulge'. By tracking the bulge star particles back in time, we find that on average 95\% of the bulge stars formed {\it in situ}, 3\% formed {\it ex situ} in satellites of the same halo, and only 2\% formed {\it ex situ} in external galaxies. The evolution of the AM distribution of the bulge stars paints an interesting picture: the higher the final B/TB/T ratio, the more the specific AM remains preserved during the bulge formation. In all cases, bulge stars migrate significantly towards the central region, reducing their average galactocentric radius by roughly a factor 2, independently of the final B/TB/T value. However, in the higher B/TB/T (0.2\gtrsim0.2) objects, the velocity of the bulge stars increases and the AM of the bulge is almost conserved, whereas at lower B/TB/T values, the velocity of the bulge stars decreases and the AM of bulge reduces. The correlation between the evolution of the AM and B/TB/T suggests that bulge and disc formation are closely linked and cannot be treated as independent processes.Comment: 17 pages, 16 Figures, 1 table; accepted for publication in MNRA

    Dynamic equilibrium sets atomic content of galaxies across cosmic time

    Get PDF
    We analyze 88 independent high-resolution cosmological zoom-in simulations of disk galaxies in the NIHAO simulations suite to explore the connection between the atomic gas fraction and angular momentum of baryons throughout cosmic time. The study is motivated by the analytic model of \citet{obreschkow16}, which predicts a relation between the atomic gas fraction fatmf_{\rm atm} and the global atomic stability parameter qjσ/(GM)q \equiv j\sigma / (GM), where MM and jj are the mass and specific angular momentum of the galaxy (stars+cold gas) and σ\sigma is the velocity dispersion of the atomic gas. We show that the simulated galaxies follow this relation from their formation (z4z\simeq4) to present within 0.5\sim 0.5 dex. To explain this behavior, we explore the evolution of the local Toomre stability and find that 90%90\%--100%100\% of the atomic gas in all simulated galaxies is stable at any time. In other words, throughout the entire epoch of peak star formation until today, the timescale for accretion is longer than the timescale to reach equilibrium, thus resulting in a quasi-static equilibrium of atomic gas at any time. Hence, the evolution of fatmf_{\rm atm} depends on the complex hierarchical growth history primarily via the evolution of qq. An exception are galaxies subject to strong environmental effects.Comment: 12 pages, 7 figures; accepted to Ap

    Dependence of climate response on meridional structure of external thermal forcing

    Get PDF
    This study shows that the magnitude of global surface warming greatly depends on the meridional distribution of surface thermal forcing. An atmospheric model coupled to an aquaplanet slab mixed layer ocean is perturbed by prescribing heating to the ocean mixed layer. The heating is distributed uniformly globally or confined to narrow tropical or polar bands, and the amplitude is adjusted to ensure that the global mean remains the same for all cases. Since the tropical temperature is close to a moist adiabat, the prescribed heating leads to a maximized warming near the tropopause, whereas the polar warming is trapped near the surface because of strong atmospheric stability. Hence, the surface warming is more effectively damped by radiation in the tropics than in the polar region. As a result, the global surface temperature increase is weak (strong) when the given amount of heating is confined to the tropical (polar) band. The degree of this contrast is shown to depend on water vapor-and cloud-radiative feedbacks that alter the effective strength of prescribed thermal forcing.open0

    Sensitivity of Climate Change Induced by the Weakening of the Atlantic Meridional Overturning Circulation to Cloud Feedback

    Get PDF
    A variety of observational and modeling studies show that changes in the Atlantic meridional overturning circulation (AMOC) can induce rapid global-scale climate change. In particular, a substantially weakened AMOC leads to a southward shift of the intertropical convergence zone (ITCZ) in both the Atlantic and the Pacific Oceans. However, the simulated amplitudes of the AMOC-induced tropical climate change differ substantially among different models. In this paper, the sensitivity to cloud feedback of the climate response to a change in the AMOC is studied using a coupled ocean-atmosphere model [the GFDL Coupled Model, version 2.1 (CM2.1)]. Without cloud feedback, the simulated AMOC-induced climate change in this model is weakened substantially. Low-cloud feedback has a strong amplifying impact on the tropical ITCZ shift in this model, whereas the effects of high-cloud feedback are weaker. It is concluded that cloud feedback is an important contributor to the uncertainty in the global response to AMOC changes.open9

    Common Warming Pattern Emerges Irrespective of Forcing Location

    Get PDF
    The Earth's climate is changing due to the existence of multiple radiative forcing agents. It is under question whether different forcing agents perturb the global climate in a distinct way. Previous studies have demonstrated the existence of similar climate response patterns in response to aerosol and greenhouse gas (GHG) forcings. In this study, the sensitivity of tropospheric temperature response patterns to surface heating distributions is assessed by forcing an atmospheric general circulation model coupled to an aquaplanet slab ocean with a wide range of possible forcing patterns. We show that a common climate pattern emerges in response to localized forcing at different locations. This pattern, characterized by enhanced warming in the tropical upper troposphere and the polar lower troposphere, resembles the historical trends from observations and models as well as the future projections. Atmospheric dynamics in combination with thermodynamic air-sea coupling are primarily responsible for shaping this pattern. Identifying this common pattern strengthens our confidence in the projected response to GHG and aerosols in complex climate models
    corecore