123 research outputs found
Organismal Climatology: Analyzing Environmental Variability at Scales Relevant to Physiological Stress
Predicting when, where and with what magnitude climate change is likely to affect the fitness, abundance and distribution of organisms and the functioning of ecosystems has emerged as a high priority for scientists and resource managers. However, even in cases where we have detailed knowledge of current species’ range boundaries, we often do not understand what, if any, aspects of weather and climate act to set these limits. This shortcoming significantly curtails our capacity to predict potential future range shifts in response to climate change, especially since the factors that set range boundaries under those novel conditions may be different from those that set limits today. We quantitatively examine a nine-year time series of temperature records relevant to the body temperatures of intertidal mussels as measured using biomimetic sensors. Specifically, we explore how a ‘climatology’ of body temperatures, as opposed to long-term records of habitat-level parameters such as air and water temperatures, can be used to extrapolate meaningful spatial and temporal patterns of physiological stress. Using different metrics that correspond to various aspects of physiological stress (seasonal means, cumulative temperature and the return time of extremes) we show that these potential environmental stressors do not always occur in synchrony with one another. Our analysis also shows that patterns of animal temperature are not well correlated with simple, commonly used metrics such as air temperature. Detailed physiological studies can provide guidance to predicting the effects of global climate change on natural ecosystems but only if we concomitantly record, archive and model environmental signals at appropriate scales
Multifaceted Role for p53 in Pancreatic Cancer Suppression
The vast majority of human pancreatic ductal adenocarcinomas (PDACs) harbor TP53 mutations, underscoring p53\u27s critical role in PDAC suppression. PDAC can arise when pancreatic acinar cells undergo acinar-to-ductal metaplasia (ADM), giving rise to premalignant pancreatic intraepithelial neoplasias (PanINs), which finally progress to PDAC. The occurrence of TP53 mutations in late-stage PanINs has led to the idea that p53 acts to suppress malignant transformation of PanINs to PDAC. However, the cellular basis for p53 action during PDAC development has not been explored in detail. Here, we leverage a hyperactive p53 variant-p5353,54-which we previously showed is a more robust PDAC suppressor than wild-type p53, to elucidate how p53 acts at the cellular level to dampen PDAC development. Using both inflammation-induced and KRASG12D-driven PDAC models, we find that p5353,54 both limits ADM accumulation and suppresses PanIN cell proliferation and does so more effectively than wild-type p53. Moreover, p5353,54 suppresses KRAS signaling in PanINs and limits effects on the extracellular matrix (ECM) remodeling. While p5353,54 has highlighted these functions, we find that pancreata in wild-type p53 mice similarly show less ADM, as well as reduced PanIN cell proliferation, KRAS signaling, and ECM remodeling relative to Trp53-null mice. We find further that p53 enhances chromatin accessibility at sites controlled by acinar cell identity transcription factors. These findings reveal that p53 acts at multiple stages to suppress PDAC, both by limiting metaplastic transformation of acini and by dampening KRAS signaling in PanINs, thus providing key new understanding of p53 function in PDAC
Postnatal Cytomegalovirus Exposure in Infants of Antiretroviral-Treated and Untreated HIV-Infected Mothers
HIV-1 and CMV are important pathogens transmitted via breastfeeding. Furthermore, perinatal CMV transmission may impact growth and disease progression in HIV-exposed infants. Although maternal antiretroviral therapy reduces milk HIV-1 RNA load and postnatal transmission, its impact on milk CMV load is unclear. We examined the relationship between milk CMV and HIV-1 load (4–6 weeks postpartum) and the impact of antiretroviral treatment in 69 HIV-infected, lactating Malawian women and assessed the relationship between milk CMV load and postnatal growth in HIV-exposed, breastfed infants through six months of age. Despite an association between milk HIV-1 RNA and CMV DNA load (0.39 log(10) rise CMV load per log(10) rise HIV-1 RNA load, 95% CI 0.13–0.66), milk CMV load was similar in antiretroviral-treated and untreated women. Higher milk CMV load was associated with lower length-for-age (−0.53, 95% CI: −0.96, −0.10) and weight-for-age (−0.40, 95% CI: −0.67, −0.13) Z-score at six months in exposed, uninfected infants. As the impact of maternal antiretroviral therapy on the magnitude of postnatal CMV exposure may be limited, our findings of an inverse relationship between infant growth and milk CMV load highlight the importance of defining the role of perinatal CMV exposure on growth faltering of HIV-exposed infants
Postnatal Cytomegalovirus Exposure in Infants of Antiretroviral-Treated and Untreated HIV-Infected Mothers
HIV-1 and CMV are important pathogens transmitted via breastfeeding. Furthermore, perinatal CMV transmission may impact growth and disease progression in HIV-exposed infants. Although maternal antiretroviral therapy reduces milk HIV-1 RNA load and postnatal transmission, its impact on milk CMV load is unclear. We examined the relationship between milk CMV and HIV-1 load (4-6 weeks postpartum) and the impact of antiretroviral treatment in 69 HIV-infected, lactating Malawian women and assessed the relationship between milk CMV load and postnatal growth in HIV-exposed, breastfed infants through six months of age. Despite an association between milk HIV-1 RNA and CMV DNA load (0.39 log 10 rise CMV load per log 10 rise HIV-1 RNA load, 95% CI 0.13-0.66), milk CMV load was similar in antiretroviral-treated and untreated women. Higher milk CMV load was associated with lower length-for-age (−0.53, 95% CI: −0.96, −0.10) and weight-for-age (−0.40, 95% CI: −0.67, −0.13) Zscore at six months in exposed, uninfected infants. As the impact of maternal antiretroviral therapy on the magnitude of postnatal CMV exposure may be limited, our findings of an inverse relationship between infant growth and milk CMV load highlight the importance of defining the role of perinatal CMV exposure on growth faltering of HIV-exposed infants
Localization of AQP5 during development of the mouse submandibular salivary gland
Aquaporin 5 (AQP5) is known to be central for salivary fluid secretion. A study of the temporal-spatial distribution of AQP5 during submandibular gland (SMG) development and in adult tissues might offer further clues to its unknown role during development. In the present work, SMGs from embryonic day (E) 14.5–18.5 and postnatal days (P) 0, 2, 5, 25, and 60 were immunostained for AQP5 and analyzed using light microscopy. Additional confocal and transmission electron microscopy were performed on P60 glands. Our results show that AQP5 expression first occurs in a scattered pattern in the late canalicular stage and becomes more prominent and organized in the terminal tubuli/pro-acinar cells towards birth. Additional apical membrane staining in the entire intralobular duct is found just prior to birth. During postnatal development, AQP5 is expressed in both the luminal and lateral membrane of pro-acinar/acinar cells. AQP5 is also detected in the basal membrane of acinar cells at P25 and P60. In the intercalated ducts at P60, the male glands show apical staining in the entire segment, while only the proximal region is positive in the female glands. These results demonstrate an evolving distribution of AQP5 during pre- and postnatal development in the mouse SMGs
Socio-cultural influences on the behaviour of South Asian women with diabetes in pregnancy: qualitative study using a multi-level theoretical approach
BACKGROUND: Diabetes in pregnancy is common in South Asians, especially those from low-income backgrounds, and leads to short-term morbidity and longer-term metabolic programming in mother and offspring. We sought to understand the multiple influences on behaviour (hence risks to metabolic health) of South Asian mothers and their unborn child, theorise how these influences interact and build over time, and inform the design of culturally congruent, multi-level interventions. METHODS: Our sample for this qualitative study was 45 women of Bangladeshi, Indian, Sri Lankan, or Pakistani origin aged 21-45 years with a history of diabetes in pregnancy, recruited from diabetes and antenatal services in two deprived London boroughs. Overall, 17 women shared their experiences of diabetes, pregnancy, and health services in group discussions and 28 women gave individual narrative interviews, facilitated by multilingual researchers, audiotaped, translated, and transcribed. Data were analysed using the constant comparative method, drawing on sociological and narrative theories. RESULTS: Key storylines (over-arching narratives) recurred across all ethnic groups studied. Short-term storylines depicted the experience of diabetic pregnancy as stressful, difficult to control, and associated with negative symptoms, especially tiredness. Taking exercise and restricting diet often worsened these symptoms and conflicted with advice from relatives and peers. Many women believed that exercise in pregnancy would damage the fetus and drain the mother's strength, and that eating would be strength-giving for mother and fetus. These short-term storylines were nested within medium-term storylines about family life, especially the cultural, practical, and material constraints of the traditional South Asian wife and mother role and past experiences of illness and healthcare, and within longer-term storylines about genetic, cultural, and material heritage - including migration, acculturation, and family memories of food insecurity. While peer advice was familiar, meaningful, and morally resonant, health education advice from clinicians was usually unfamiliar and devoid of cultural meaning. CONCLUSIONS: 'Behaviour change' interventions aimed at preventing and managing diabetes in South Asian women before and during pregnancy are likely to be ineffective if delivered in a socio-cultural vacuum. Individual education should be supplemented with community-level interventions to address the socio-material constraints and cultural frames within which behavioural 'choices' are made
A polygenic and phenotypic risk prediction for polycystic ovary syndrome evaluated by phenomewide association studies
Context: As many as 75% of patients with polycystic ovary syndrome (PCOS) are estimated tobe unidentified in clinical practice. Objective: Utilizing polygenic risk prediction, we aim to identify the phenome-widecomorbidity patterns characteristic of PCOS to improve accurate diagnosis and preventivetreatment.Design, Patients, and Methods: Leveraging the electronic health records (EHRs) of 124 852individuals, we developed a PCOS risk prediction algorithm by combining polygenic risk scores(PRS) with PCOS component phenotypes into a polygenic and phenotypic risk score (PPRS). Weevaluated its predictive capability across different ancestries and perform a PRS-based phenomewide association study (PheWAS) to assess the phenomic expression of the heightened risk ofPCOS.Results: The integrated polygenic prediction improved the average performance (pseudo-R2)for PCOS detection by 0.228 (61.5-fold), 0.224 (58.8-fold), 0.211 (57.0-fold) over the null modelacross European, African, and multi-ancestry participants respectively. The subsequent PRSpowered PheWAS identified a high level of shared biology between PCOS and a range ofmetabolic and endocrine outcomes, especially with obesity and diabetes: "morbid obesity","type 2 diabetes", "hypercholesterolemia", "disorders of lipid metabolism", "hypertension",and "sleep apnea" reaching phenome-wide significance.Conclusions: Our study has expanded the methodological utility of PRS in patient stratificationand risk prediction, especially in a multifactorial condition like PCOS, across different geneticorigins. By utilizing the individual genome-phenome data available from the EHR, our approachalso demonstrates that polygenic prediction by PRS can provide valuable opportunities todiscover the pleiotropic phenomic network associated with PCOS pathogenesis.Abbreviations: AA, African ancestry; ANOVA, analysis of variance; BMI, body mass index; EA,European ancestry; EHR, electronic health records; eMERGE, electronic Medical Records andGenomics Network; GWAS, genome-wide association study; IBD, identity-by-descent; ICDCM, International Classification of Diseases, Clinical Modification; LD, linkage disequilibrium;MA, multi-ancestry; MAF, minor allele frequency; NIH, National Institutes of Health; PCA,principal component analysis; PheWAS, phenome-wide association study; PCOS, polycysticovary syndrome; PPRS, polygenic and phenotypic risk score; PRS, polygenic risk sc
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
A New Anti-Depressive Strategy for the Elderly: Ablation of FKBP5/FKBP51
The gene FKBP5 codes for FKBP51, a co-chaperone protein of the Hsp90 complex that increases with age. Through its association with Hsp90, FKBP51 regulates the glucocorticoid receptor (GR). Single nucleotide polymorphisms (SNPs) in the FKBP5 gene associate with increased recurrence of depressive episodes, increased susceptibility to post-traumatic stress disorder, bipolar disorder, attempt of suicide, and major depressive disorder in HIV patients. Variation in one of these SNPs correlates with increased levels of FKBP51. FKBP51 is also increased in HIV patients. Moreover, increases in FKBP51 in the amygdala produce an anxiety phenotype in mice. Therefore, we tested the behavioral consequences of FKBP5 deletion in aged mice. Similar to that of naïve animals treated with classical antidepressants FKBP5−/− mice showed antidepressant behavior without affecting cognition and other basic motor functions. Reduced corticosterone levels following stress accompanied these observed effects on depression. Age-dependent anxiety was also modulated by FKBP5 deletion. Therefore, drug discovery efforts focused on depleting FKBP51 levels may yield novel antidepressant therapies
Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility
Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen
characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose
and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male
infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect
fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and
DNA, which may impair the sperm’s potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of
male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress
Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many
patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a
useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants
(antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the
potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective
test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing
the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis,
future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause
- …