55 research outputs found

    Outlier Loci Detect Intraspecific Biodiversity amongst Spring and Autumn Spawning Herring across Local Scales

    Get PDF
    Herring, Clupea harengus, is one of the ecologically and commercially most important species in European northern seas, where two distinct ecotypes have been described based on spawning time; spring and autumn. To date, it is unknown if these spring and autumn spawning herring constitute genetically distinct units. We assessed levels of genetic divergence between spring and autumn spawning herring in the Baltic Sea using two types of DNA markers, microsatellites and Single Nucleotide Polymorphisms, and compared the results with data for autumn spawning North Sea herring. Temporally replicated analyses reveal clear genetic differences between ecotypes and hence support reproductive isolation. Loci showing non-neutral behaviour, so-called outlier loci, show convergence between autumn spawning herring from demographically disjoint populations, potentially reflecting selective processes associated with autumn spawning ecotypes. The abundance and exploitation of the two ecotypes have varied strongly over space and time in the Baltic Sea, where autumn spawners have faced strong depression for decades. The results therefore have practical implications by highlighting the need for specific management of these co-occurring ecotypes to meet requirements for sustainable exploitation and ensure optimal livelihood for coastal communitie

    SNP discovery using next generation transcriptomic sequencing in Atlantic herring (Clupea harengus)

    Get PDF
    The introduction of Next Generation Sequencing (NGS) has revolutionised population genetics, providing studies of non-model species with unprecedented genomic coverage, allowing evolutionary biologists to address questions previously far beyond the reach of available resources. Furthermore, the simple mutation model of Single Nucleotide Polymorphisms (SNPs) permits cost-effective high-throughput genotyping in thousands of individuals simultaneously. Genomic resources are scarce for the Atlantic herring (Clupea harengus), a small pelagic species that sustains high revenue fisheries. This paper details the development of 578 SNPs using a combined NGS and high-throughput genotyping approach. Eight individuals covering the species distribution in the eastern Atlantic were bar-coded and multiplexed into a single cDNA library and sequenced using the 454 GS FLX platform. SNP discovery was performed by de novo sequence clustering and contig assembly, followed by the mapping of reads against consensus contig sequences. Selection of candidate SNPs for genotyping was conducted using an in silico approach. SNP validation and genotyping were performed simultaneously using an Illumina 1,536 GoldenGate assay. Although the conversion rate of candidate SNPs in the genotyping assay cannot be predicted in advance, this approach has the potential to maximise cost and time efficiencies by avoiding expensive and time-consuming laboratory stages of SNP validation. Additionally, the in silico approach leads to lower ascertainment bias in the resulting SNP panel as marker selection is based only on the ability to design primers and the predicted presence of intron-exon boundaries. Consequently SNPs with a wider spectrum of minor allele frequencies (MAFs) will be genotyped in the final panel. The genomic resources presented here represent a valuable multi-purpose resource for developing informative marker panels for population discrimination, microarray development and for population genomic studies in the wild

    Trade-Offs Between Reducing Complex Terminology and Producing Accurate Interpretations from Environmental DNA: Comment on “Environmental DNA: What\u27s behind the term?” by Pawlowski et al., (2020)

    Get PDF
    In a recent paper, “Environmental DNA: What\u27s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring,” Pawlowski et al. argue that the term eDNA should be used to refer to the pool of DNA isolated from environmental samples, as opposed to only extra-organismal DNA from macro-organisms. We agree with this view. However, we are concerned that their proposed two-level terminology specifying sampling environment and targeted taxa is overly simplistic and might hinder rather than improve clear communication about environmental DNA and its use in biomonitoring. This terminology is based on categories that are often difficult to assign and uninformative, and it overlooks a fundamental distinction within eDNA: the type of DNA (organismal or extra-organismal) from which ecological interpretations are derived

    Integrated statolith and genomic analysis reveals high connectivity in the nektonic squid Illex argentinus: implications for management of an international cephalopod fishery

    No full text
    The neritic-oceanic squid Illex argentinus supports one of the largest fisheries in the Southwest Atlantic. It is characterized by extensive migrations across the Patagonian Shelf and complex population structure comprising distinct seasonal spawning groups. To address uncertainty as to the demographic independence of these groups that may compromise sustainable management, a multidisciplinary approach was applied integrating statolith ageing with genome-wide single-nucleotide polymorphism (SNP) analysis. To obtain complete coverage of the spawning groups, sampling was carried out at multiple times during the 2020 fishing season and covered a large proportion of the species' range across the Patagonian Shelf. Statolith and microstructure analysis revealed three distinct seasonal spawning groups of winter-, spring-, and summer-hatched individuals. Subgroups were identified within each seasonal group, with statolith microstructure indicating differences in environmental conditions during ontogeny. Analysis of >10 000 SNPs reported no evidence of neutral or non-neutral genetic structure among the various groups. These findings indicate that I. argentinus across the Patagonian Shelf belong to one genetic population and a collaborative management strategy involving international stakeholders is required. The connectivity among spawning groups may represent a "bet-hedging" mechanism important for population resilience

    Data from: "Discovery and characterization of 80 SNPs and 1,624 SSRs in the transcriptome of Atlantic mackerel (Scomber scombrus, L)" in Genomic Resources Notes Accepted 1 June 2015 to 31 July 2015

    No full text
    This paper reports on SNP discovery in the Atlantic mackerel transcriptome, using next generation sequencing technologies and applying developed methodology already proven successful for the European anchovy. A total of 9,966 high quality transcriptome contigs were assembled, from which 951 putative SNPs were discovered. In all, 479 putative SNPs and 1,624 simple sequence repeats (SSRs) suitable for genotyping were identified. A subset of 96 was selected for genotyping; from these, 80 SNPs were considered polymorphic and reliably scored after genotyping of 105 individuals from three locations in the Eastern Atlantic Ocean. These markers will be valuable for future studies on population genetic structure assessment and for product tracing
    • …
    corecore