12 research outputs found

    Detection Methods for Autoantibodies in Suspected Autoimmune Encephalitis

    Get PDF
    This review provides an overview on different antibody test methods that can be applied in cases of suspected paraneoplastic neurological syndromes (PNS) and anti-neuronal autoimmune encephalitis (AIE) in order to explain their diagnostic value, describe potential pitfalls and limitations, and discuss novel approaches aimed at discovering further autoantibodies. Onconeuronal antibodies are well-established biomarkers for PNS and may serve as specific tumor markers. The recommended procedure to detect onconeuronal antibodies is a combination of indirect immunohistochemistry on fixed rodent cerebellum and confirmation of the specificity by line assays. Simplification of this approach by only using line assays with recombinant proteins bears the risk to miss antibody-positive samples. Anti-neuronal surface antibodies are sensitive and specific biomarkers for AIE. Their identification requires the use of test methods that allow the recognition of conformation dependent epitopes. These commonly include cell-based assays and tissue based assays with unfixed rodent brain tissue. Tissue based assays can detect most of the currently known neuronal surface antibodies and thus enable broad screening of biological samples. A complementary testing on live neuronal cell cultures may confirm that the antibody recognizes a surface epitope. In patients with peripheral neuropathy, the screening may be expanded to teased nerve fibers to identify antibodies against the node of Ranvier. This method helps to identify a novel subgroup of peripheral autoimmune neuropathies, resulting in improved immunotherapy of these patients. Tissue based assays are useful to discover additional autoantibody targets that play a role in diverse autoimmune neurological syndromes. Antibody screening assays represent promising avenues of research to improve the diagnostic yield of current assays for antibody-associated autoimmune encephalitis

    The Structure of Gold-Nanoparticle Networks Cross-Linked by Di- and Multifunctional RAFT Oligomers

    No full text
    Gold nanoparticle (AuNP) network structures featuring particles from the two-phase Brust–Schiffrin synthesis and linear RAFT oligomers of styrene with two and multiple trithiocarbonate (TTC) groups along their backbone have been investigated in detail. Insights into the internal structures of these particle networks could be obtained from small-angle X-ray scattering experiments, showing that primary AuNPs are cross-linked by the employed molecular linker. The extent of AuNP network formation was investigated by means of dynamic light scattering and UV/visible extinction spectroscopy, showing an abrupt attenuation of network formation after a critical degree of polymerization of the cross-linker is exceeded. Analysis of transmission electron micrographs indicated a three-dimensional shape of the particle superstructures, which is evenly filled with the primary AuNPs. From the results obtained in this study, guidelines for the fabrication of nanoparticle networks from the self-assembly with macromolecular cross-linkers are suggested

    Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction

    No full text
    Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization

    Following DNA Compaction During the Cell Cycle by X‑ray Nanodiffraction

    No full text
    X-ray imaging of intact biological cells is emerging as a complementary method to visible light or electron microscopy. Owing to the high penetration depth and small wavelength of X-rays, it is possible to resolve subcellular structures at a resolution of a few nanometers. Here, we apply scanning X-ray nanodiffraction in combination with time-lapse bright-field microscopy to nuclei of 3T3 fibroblasts and thus relate the observed structures to specific phases in the cell division cycle. We scan the sample at a step size of 250 nm and analyze the individual diffraction patterns according to a generalized Porod’s law. Thus, we obtain information on the aggregation state of the nuclear DNA at a real space resolution on the order of the step size and in parallel structural information on the order of few nanometers. We are able to distinguish nucleoli, heterochromatin, and euchromatin in the nuclei and follow the compaction and decompaction during the cell division cycle

    Memory CD8(+) T Cells Require Increased Concentrations of Acetate Induced by Stress for Optimal Function.

    No full text
    How systemic metabolic alterations during acute infections impact immune cell function remains poorly understood. We found that acetate accumulates in the serum within hours of systemic bacterial infections and that these increased acetate concentrations are required for optimal memory CD8(+) T cell function in vitro and in vivo. Mechanistically, upon uptake by memory CD8(+) T cells, stress levels of acetate expanded the cellular acetyl-coenzyme A pool via ATP citrate lyase and promoted acetylation of the enzyme GAPDH. This context-dependent post-translational modification enhanced GAPDH activity, catalyzing glycolysis and thus boosting rapid memory CD8(+) T cell responses. Accordingly, in a murine Listeria monocytogenes model, transfer of acetate-augmented memory CD8(+) T cells exerted superior immune control compared to control cells. Our results demonstrate that increased systemic acetate concentrations are functionally integrated by CD8(+) T cells and translate into increased glycolytic and functional capacity. The immune system thus directly relates systemic metabolism with immune alertness
    corecore