121 research outputs found
Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex
The bacterial ATPase SecA and protein channel complex SecYEG form the core of an essential protein translocation machinery. The nature of the conformational changes induced by each stage of the hydrolytic cycle of ATP and how they are coupled to protein translocation are not well understood. The structure of the SecA–SecYEG complex revealed a 2-helix-finger (2HF) of SecA in an ideal position to contact the substrate protein and push it through the membrane. Surprisingly, immobilization of this finger at the edge of the protein channel had no effect on translocation, whereas its imposition inside the channel blocked transport. This analysis resolves the stoichiometry of the active complex, demonstrating that after the initiation process translocation requires only one copy each of SecA and SecYEG. The results also have important implications on the mechanism of energy transduction and the power stroke driving transport. Evidently, the 2HF is not a highly mobile transducing element of polypeptide translocation
The dynamic action of SecA during the initiation of protein translocation
Biotechnology and Biological Sciences Research Council (BBSRC) [a doctoral training grant Ph.D. studentship to S.W. and project grant number BB/I008675/1] and the Wellcome Trust [project grant number 084452]
Time- and Space-Resolved Flow-Cytometry of Cell Organelles to Quantify Nanoparticle Uptake and Intracellular Trafficking by Cells
The design of targeted nanomedicines requires intracellular space- and time-resolved data of nanoparticle distribution following uptake. Current methods to study intracellular trafficking, such as dynamic colocalization by fluorescence microscopy in live cells, are usually low throughput and require extensive analysis of large datasets to quantify colocalization in several individual cells. Here a method based on flow cytometry to easily detect and characterize the organelles in which nanoparticles are internalized and trafficked over time is proposed. Conventional cell fractionation methods are combined with immunostaining and high-sensitivity organelle flow cytometry to get space-resolved data of nanoparticle intracellular distribution. By extracting the organelles at different times, time-resolved data of nanoparticle intracellular trafficking are obtained. The method is validated by determining how nanoparticle size affects the kinetics of arrival to the lysosomes. The results demonstrate that this method allows high-throughput analysis of nanoparticle uptake and intracellular trafficking by cells, therefore it can be used to determine how nanoparticle design affects their intracellular behavior
Unpacking the Code : Game modification as a form of queer play
An exploration of game modification through the lens of queer and gender theor
Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified polystyrene on alveolar-like macrophages
Macrophages play a major role in the removal of foreign materials, including nano-sized materials, such as nanomedicines and other nanoparticles, which they accumulate very efficiently. Because of this, it is recognized that for a safe development of nanotechnologies and nanomedicine, it is essential to investigate potential effects induced by nano-sized materials on macrophages. To this aim, in this work, a recently established model of primary murine alveolar-like macrophages was used to investigate macrophage responses to two well-known nanoparticle models: 50 nm amino-modified polystyrene, known to induce cell death via lysosomal damage and apoptosis in different cell types, and 50 nm silica nanoparticles, which are generally considered non-toxic. Then, a time-resolved study was performed to characterize in detail the response of the macrophages following exposure to the two nanoparticles. As expected, exposure to the amino-modified polystyrene led to cell death, but surprisingly no lysosomal swelling or apoptosis were detected. On the contrary, a peculiar mitochondrial membrane hyperpolarization was observed, accompanied by endoplasmic reticulum stress (ER stress), increased cellular reactive oxygen species (ROS) and changes of metabolic activity, ultimately leading to cell death. Strong toxic responses were observed also after exposure to silica, which included mitochondrial ROS production, mitochondrial depolarization and cell death by apoptosis. Overall, these results showed that exposure to the two nanoparticles led to a very different series of intracellular events, suggesting that the macrophages responded differently to the two nanoparticle models. Similar time-resolved studies are required to characterize the response of macrophages to nanoparticles, as a key parameter in nanosafety assessment
Corona Composition Can Affect the Mechanisms Cells Use to Internalize Nanoparticles
Nano-sized objects, such as nanoparticles and other drug carriers used in nanomedicine, once in contact with biological environments are modified by adsorption of biomolecules on their surface. The presence of this corona strongly affects the following interactions at cell and organism levels. It has been shown that corona proteins can be recognized by cell receptors. However, it is not known whether the composition of this acquired layer can also affect the mechanisms nanoparticles use to enter cells. This is of particular importance when considering that the same nanoparticles can form different coronas for instance In Vitro when exposed to cells in different serum amounts, or In Vivo depending on the exposure or administration route. Thus, in this work, different coronas were formed on 50 nm silica by exposing them to different serum concentrations. The uptake efficiency in HeLa cells was compared, and the uptake mechanisms were characterized using transport inhibitors and RNA interference. The results showed that the nanoparticles were internalized by cells via different mechanisms when different coronas were formed, and only for one corona condition uptake was mediated by the LDL receptor. This suggested that corona of different composition can be recognized differently by cell receptors, and this in turn leads to internalization via different mechanisms. Similar studies were performed using other cells, including A549 cells and primary HUVEC, and different nanoparticles, namely 100 nm liposomes and 200 nm silica. Overall, the results confirmed that the corona composition can affect the mechanism of nanoparticle uptake by cells
Feasibility of mechanical extrusion to coat nanoparticles with extracellular vesicle membranes
Biomimetic functionalization to confer stealth and targeting properties to nanoparticles is a field of intense study. Extracellular vesicles (EV), sub-micron delivery vehicles for intercellular communication, have unique characteristics for drug delivery. We investigated the top-down functionalization of gold nanoparticles with extracellular vesicle membranes, including both lipids and associated membrane proteins, through mechanical extrusion. EV surface-exposed membrane proteins were confirmed to help avoid unwanted elimination by macrophages, while improving autologous uptake. EV membrane morphology, protein composition and orientation were found to be unaffected by mechanical extrusion. We implemented complementary EV characterization methods, including transmission- and immune-electron microscopy, and nanoparticle tracking analysis, to verify membrane coating, size and zeta potential of the EV membrane-cloaked nanoparticles. While successful EV membrane coating of the gold nanoparticles resulted in lower macrophage uptake, low yield was found to be a significant downside of the extrusion approach. Our data incentivize more research to leverage EV membrane biomimicking as a unique drug delivery approach in the near future
Cognitive Behavioral Therapy Factors Related to Outcomes in Depression Among Youth with HIV
PURPOSE: This is a secondary analysis of a multi-site, cluster (site) randomized trial of the efficacy of a combined Health and Wellness Cognitive Behavior Therapy (H&W CBT) and medication management approach for depression in youth with HIV (YWH) compared to standard care. In this study, we explored the association between H&W CBT factors and depression outcomes after 24 weeks of treatment to discover treatment elements associated with symptom reduction.
METHODS: Participants (12-24 years of age) were YWH in the United States (US) diagnosed with moderate to severe depression [Quick Inventory of Depressive Symptomatology (QIDS), Clinician-Rated score ≥ 11]. Thirteen US sites were randomly assigned to either the combination treatment approach or standard care. For site-level analyses, site-specific summary scores were used to account for the within site correlation.
RESULTS ALL SCORES ARE SITE-LEVEL: The number of depressive symptoms [QIDS-Self Reported (QIDS-SR) score] after 24 weeks of H&W CBT was significantly negatively correlated with the mean total session duration (ρ = - 0.94), the total homework assigned (ρ = - 0.83), the total number of practice modules used (ρ = - 0.83), and the mean total booster sessions given (ρ = - 0.82).
CONCLUSIONS: Specific elements of the H&W CBT (e.g., dose, assignment of homework, greater skills practice, and use of booster sessions) were associated with improvement of depression outcomes in YWH. A focus on these elements in treatment may improve symptom reduction for YWH with depression
Recommended from our members
Real-world clinical impact of plasma cell-free DNA metagenomic next-generation sequencing assay.
To describe the real-world clinical impact of a commercially available plasma cell-free DNA metagenomic next-generation sequencing assay, the Karius test (KT). We retrospectively evaluated the clinical impact of KT by clinical panel adjudication. Descriptive statistics were used to study associations of diagnostic indications, host characteristics, and KT-generated microbiologic patterns with the clinical impact of KT. Multivariable logistic regression modeling was used to further characterize predictors of higher positive clinical impact. We evaluated 1000 unique clinical cases of KT from 941 patients between January 1, 2017-August 31, 2023. The cohort included adult (70%) and pediatric (30%) patients. The overall clinical impact of KT was positive in 16%, negative in 2%, and no clinical impact in 82% of the cases. Among adult patients, multivariable logistic regression modeling showed that culture-negative endocarditis (OR 2.3; 95% CI, 1.11-4.53; P .022) and concern for fastidious/zoonotic/vector-borne pathogens (OR 2.1; 95% CI, 1.11-3.76; P .019) were associated with positive clinical impact of KT. Host immunocompromised status was not reliably associated with a positive clinical impact of KT (OR 1.03; 95% CI, 0.83-1.29; P .7806). No significant predictors of KT clinical impact were found in pediatric patients. Microbiologic result pattern was also a significant predictor of impact. Our study highlights that despite the positive clinical impact of KT in select situations, most testing results had no clinical impact. We also confirm diagnostic indications where KT may have the highest yield, thereby generating tools for diagnostic stewardship
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
- …
