
 

 

 University of Groningen

Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-
modified polystyrene on alveolar-like macrophages
Deville, Sarah; Honrath, Birgit; Tran, Quynh T D; Fejer, Gyorgy; Lambrichts, Ivo; Nelissen,
Inge; Dolga, Amalia M; Salvati, Anna
Published in:
Archives of toxicology

DOI:
10.1007/s00204-019-02604-5

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Deville, S., Honrath, B., Tran, Q. T. D., Fejer, G., Lambrichts, I., Nelissen, I., Dolga, A. M., & Salvati, A.
(2020). Time-resolved characterization of the mechanisms of toxicity induced by silica and amino-modified
polystyrene on alveolar-like macrophages. Archives of toxicology, 94(1), 173-186.
https://doi.org/10.1007/s00204-019-02604-5

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 26-12-2020

https://doi.org/10.1007/s00204-019-02604-5
https://www.rug.nl/research/portal/en/publications/timeresolved-characterization-of-the-mechanisms-of-toxicity-induced-by-silica-and-aminomodified-polystyrene-on-alveolarlike-macrophages(1746e87f-265c-497a-b8be-ff52bade0bbc).html
https://doi.org/10.1007/s00204-019-02604-5


Vol.:(0123456789)1 3

Archives of Toxicology (2020) 94:173–186 
https://doi.org/10.1007/s00204-019-02604-5

IN VITRO SYSTEMS

Time‑resolved characterization of the mechanisms of toxicity 
induced by silica and amino‑modified polystyrene on alveolar‑like 
macrophages

Sarah Deville1,2,3  · Birgit Honrath4  · Quynh T. D. Tran1 · Gyorgy Fejer5  · Ivo Lambrichts3  · Inge Nelissen2  · 
Amalia M. Dolga4  · Anna Salvati1 

Received: 19 June 2019 / Accepted: 23 October 2019 / Published online: 1 November 2019 
© The Author(s) 2019

Abstract
Macrophages play a major role in the removal of foreign materials, including nano-sized materials, such as nanomedicines 
and other nanoparticles, which they accumulate very efficiently. Because of this, it is recognized that for a safe development 
of nanotechnologies and nanomedicine, it is essential to investigate potential effects induced by nano-sized materials on 
macrophages. To this aim, in this work, a recently established model of primary murine alveolar-like macrophages was used 
to investigate macrophage responses to two well-known nanoparticle models: 50 nm amino-modified polystyrene, known 
to induce cell death via lysosomal damage and apoptosis in different cell types, and 50 nm silica nanoparticles, which are 
generally considered non-toxic. Then, a time-resolved study was performed to characterize in detail the response of the mac-
rophages following exposure to the two nanoparticles. As expected, exposure to the amino-modified polystyrene led to cell 
death, but surprisingly no lysosomal swelling or apoptosis were detected. On the contrary, a peculiar mitochondrial membrane 
hyperpolarization was observed, accompanied by endoplasmic reticulum stress (ER stress), increased cellular reactive oxy-
gen species (ROS) and changes of metabolic activity, ultimately leading to cell death. Strong toxic responses were observed 
also after exposure to silica, which included mitochondrial ROS production, mitochondrial depolarization and cell death by 
apoptosis. Overall, these results showed that exposure to the two nanoparticles led to a very different series of intracellular 
events, suggesting that the macrophages responded differently to the two nanoparticle models. Similar time-resolved stud-
ies are required to characterize the response of macrophages to nanoparticles, as a key parameter in nanosafety assessment.

Keywords Nanoparticles · Nanosafety · Macrophages · Cytotoxicity · Cell death mechanisms

Introduction

Owing to their unique size-related properties, nanoparticles 
have been proposed as new tools in nanotechnology, includ-
ing biotechnology and nanomedicine applications (Ferrari 
2005; Buzea et al. 2007; Mamo et al. 2010; Blanco et al. 
2011; Lobatto et al. 2011; Lam et al. 2018). To ensure a 
safe development and application of nanotechnologies, their 
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potential effects on cells and organisms need to be evaluated 
carefully prior to their application (De Jong and Borm 2008; 
Bouwmeester et al. 2009; Xia et al. 2009; Oberdorster 2010; 
Rivera Gil et al. 2010; Klein et al. 2011, 2013; Deville et al. 
2016).

Within this context, it is recognized that the analysis 
of cellular responses of macrophages to nanoparticles is 
a critical parameter for nanosafety assessment (Dobrovol-
skaia et al. 2008; Lanone et al. 2009; Gustafson et al. 2015; 
Wiemann et al. 2016; Bhattacharya et al. 2017; Boraschi 
et al. 2017). Macrophages are, in fact, in the first line of 
defense against pathogens, including environmental pol-
lution (Figueiredo Borgognoni et al. 2018). They play a 
major role in the removal of foreign materials by phagocy-
tosis and by mediating inflammatory responses. In this pro-
cess, macrophages can engulf particulate matter including 
nanoparticles from the extracellular space very efficiently 
(Walkey et al. 2012). Indeed, in vivo distribution studies 
showed that after exposure to nanoparticles, regardless of 
the exposure route, within the tissues where nanoparticles 
distribute, macrophages are the cells which usually show 
the highest nanoparticle accumulation (Pouliquen et al. 
1991; Briley-Saebo et al. 2004; Geiser et al. 2008). Simi-
larly in nanomedicine, following intravenous administration, 
most nanoformulations are known to be rapidly sequestered 
by macrophages (Owens and Peppas 2006; Walkey et al. 
2012), a factor limiting the efficiency of nanoparticle deliv-
ery in targeted applications (Wilhelm et al. 2016; Tavares 
et al. 2017). Additionally, tissue-specific macrophages can 
respond differently to pathogens and pollution (Gordon et al. 
2014; Fejer et al. 2015). Thus, nanoparticles may elicit dif-
ferent toxic responses on the specific resident macrophages 
within the organs in which they distribute.

Selecting cell models reflecting appropriately the hetero-
geneity of tissue-specific macrophages is particularly chal-
lenging since macrophage models for in vitro studies are 
affected by several limits (Chanput et al. 2014; Andreu et al. 
2017). Macrophages in fact can be best investigated using 
primary cells. This is because in many cases the genetic 
background of transformed macrophage cell lines is not well 
defined, and transformed lines may not reflect well the phe-
notype of the original macrophage type (Pan et al. 2009; 
Chanput et al. 2014; Andreu et al. 2017). Nevertheless, given 
the limited availability of primary macrophages, to have 
access to sufficient quantities of cells, in vitro studies often 
use immortalized macrophage cell lines [a classic example 
being differentiated human THP-1 monocytes (Lunov et al. 
2011)], even if they are not always optimal for this purpose.

In the context of nanoparticle-induced toxicity, the lung 
and its resident phagocytes, the alveolar macrophages, are 
undoubtedly a relevant model, as the lung constitutes one 
of the major potential routes of exposure (Schlinkert et al. 
2015; Wohlleben et al. 2016; Frijns et al. 2017). Recently, 

murine Max Planck Institute (MPI) cells have been intro-
duced as novel GM-CSF-dependent, continuously grow-
ing, non-transformed macrophages, derived from fetal 
liver. It has been shown that these cells faithfully repro-
duce the unique responses of alveolar macrophages, thus 
they can be used as a rather unique cell model for this type 
of macrophages (Fejer et al. 2013; Maler et al. 2017; Stich-
ling et al. 2018). Furthermore, unlike to scarcely avail-
able alveolar macrophages harvested from bronchoalveolar 
lavage, this robust system provides unrestricted amounts 
of primary macrophages for detailed biochemical analy-
sis. Given these unique features, we selected MPI cells to 
characterize in detail the response of alveolar-like mac-
rophages to two well-characterized nanoparticle types, 
for which extensive information on the effect on other 
cell models is already available in literature (Bexiga et al. 
2011; Shapero et al. 2011; Lesniak et al. 2012; Wang et al. 
2013a, 2018; Ye et al. 2017).

One of the selected nanoparticles were 50 nm amino-
modified polystyrene nanoparticles  (NH2-PS), a well-known 
model to characterize the toxicity induced by (some) posi-
tively charged materials (Lv et al. 2006; Aillon et al. 2009; 
Bexiga et al. 2011; Wang et al. 2013a). While it is known 
that bare positive charges can cause direct damage to the 
cell membrane (Ruenraroengsak et al. 2012), once exposed 
to cells in a more realistic biological environment,  NH2-PS 
nanoparticles—as most nanomaterials—are covered by pro-
teins and biomolecules. The resulting corona–nanoparticle 
complexes, usually close to neutrality or slightly negative 
due to the adsorbed proteins, are then taken up by the cell, 
where they accumulate in the lysosomes (Bexiga et al. 2011; 
Wang et al. 2013a, b). Here, the degradation of the origi-
nal corona protein layer around the nanoparticles can be 
accompanied by the swelling of the lysosomes and lysoso-
mal rupture, resulting in the release of the lysosomal content 
into the cytosol and the initiation of apoptosis (Wang et al. 
2013a, b). As a second nanoparticle model, 50 nm plain 
silica nanoparticles  (SiO2) were selected. These are gener-
ally well tolerated by cells (Shapero et al. 2011; Lesniak 
et al. 2012; Ye et al. 2017) and are often considered bio-
compatible, although some studies suggest that also these 
nanoparticles can interfere with the physiological cellular 
behavior (Mohamed et al. 2011) and others indicate that they 
can elicit inflammatory responses in phagocytes (Park et al. 
2011; Kusaka et al. 2014).

A series of assays to measure cellular metabolism, lyso-
somal alterations, ROS production, mitochondrial processes 
and apoptosis were combined to determine nanoparticle 
impact on the alveolar-like macrophages. Thus, a detailed 
time-resolved analysis on the different end-points selected 
was performed. The time-resolved approach allowed us to 
determine the sequence of cellular events following nano-
particle exposure and accumulation in the MPI macrophages 
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and in this way to characterize their responses to the two 
nanoparticle models.

Materials and methods

Cell culture

Max Planck Institute (MPI) cells were cultured as previ-
ously described in a complete cell culture medium consist-
ing of RPMI 1640 medium (Gibco) supplemented with 10% 
heat-inactivated fetal bovine serum (FBS, Gibco), 10 µg/ml 
gentamycin (Gibco) and 20 ng/ml GM-CSF (Peprotech, 
Bio-Connect, Huissen, Netherlands) (Fejer et al. 2013). 
For routine sub-culturing, floating and adherent cells har-
vested with 1.5 mM EDTA (Merck Millipore, Darmstadt, 
Germany) in phosphate buffer saline (PBS, Gibco, Grant 
Island, USA) were combined, centrifuged, and resuspended 
in complete cell culture medium. Cells were seeded at a den-
sity of 20,000 cells/cm2 and subcultured weekly. Cell culture 
medium was refreshed after 5 days. All experiments were 
performed with cells between passage 6 and passage 12.

Nanoparticle dispersion preparation, 
characterization and exposure to cells

MPI cells were exposed to different doses of unlabeled 
50 nm plain silica nanoparticles  (SiO2 nanoparticles, Kisker 
Biotech, Steinfurt, Germany) and 50 nm amino-modified 
polystyrene nanoparticles  (NH2-PS nanoparticles, Bang 
Laboratories, Fishers, USA). Nanoparticle dispersions were 
prepared by diluting the concentrated stock dispersions in 
complete cell culture medium immediately prior to exposure 
to the cells. Dispersions were characterized by means of 
dynamic light scattering and zeta potential determination 
using a Malvern Zeta Sizer ZS (ZEN 3600, Malvern Instru-
ments, Malvern, UK). Briefly, nanoparticles were diluted to 
100 µg/ml in water, PBS and complete cell culture medium 
and measured at 20 °C immediately after dispersion or after 
24 h of incubation at 37 °C and 5%  CO2. Each sample was 
measured for a total of three measurements which contained 
each ten runs of 10 s. For each condition, three independ-
ent replicate dispersions were prepared and measured. The 
results are the mean and standard error of the mean (± SEM) 
of the results obtained from three independent dispersions. 
Cells were exposed to the nanoparticles by replacing the 
medium with the freshly prepared nanoparticle dispersions 
in complete cell culture medium.

Flow cytometry assays on cellular functions

250,000 MPI cells were seeded in a 12-well plate and 
48 h after seeding were exposed to different doses of  SiO2 

nanoparticles and  NH2-PS nanoparticles in complete cell 
culture medium for the indicated times. Thereafter, floating 
and adhering cells harvested with 1.5 mM EDTA in PBS 
were combined and stained with various fluorescent mark-
ers. After staining, cells were washed two times by cen-
trifugation and resuspended in PBS and cell fluorescence 
intensity was measured immediately using a CytoFLEX 
flow cytometer (Beckman Coulter, Brea, USA). LysoTracker 
Red,  H2DCFDA, MitoSOX Red, BODIPY 581/591 Cera-
minde-11, TMRE, rhodamine-2 AM, Pacific Blue Annexin 
V/SYTOX AADvanced were used according to the man-
ufacturer’s guidelines (see Supporting Information for 
detailed information). For all assays, gates in the forward 
and side scattering double scatter plots were set to exclude 
cell debris. Cell doublets were excluded in the FSC-A ver-
sus FSC-H double scatter plots. A minimum of 20,000 cells 
were measured (unless specified). Then, the mean of the 
obtained fluorescence intensity distributions was calculated 
and the results were normalized by the mean fluorescence 
intensity of untreated cells. Every experiment was repeated 
at least two times to confirm the outcomes. The results of 
individual technical replicates of a representative experiment 
are shown together with their average.

Measurement of cell viability and caspase 3/7 
activity

To assess the viability and caspase 3/7 activation, 25,000 
MPI cells were seeded in a 96-well plate and 48 h after 
seeding were exposed as described above to different doses 
of  SiO2 and  NH2-PS nanoparticles in complete cell culture 
medium for the indicated times (100 µl). After the desired 
exposure time, the medium containing the nanoparticle 
dispersion was removed and the metabolic activity and 
caspase activity were measured with, respectively, a MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide) assay and a Caspase 3/7-Glo kit (Promega, Madi-
son, USA). Detailed protocols are found in the Supporting 
Information.

Quantitative real‑time PCR (qPCR)

For qPCR, 500 000 MPI cells were seeded in a 6-well plate 
and 48 h after seeding, were exposed to different doses 
of nanoparticles as described above. Then, total RNA 
was extracted using Trizol RNA extraction (TRI Reagent 
Solution, Applied Biosystems, Landsmeer, Netherlands) 
and cDNA was synthesized from 1000 ng RNA using the 
Reverse Transcriptase System (Promega). qPCR was per-
formed using SYBR Green (Roche Diagnostics, Almere, 
Netherlands) for CHOP and Beclin-1. Details are found in 
the Supporting Information.
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Results

Nanoparticle characterization

Prior to exposure to cells, the selected  NH2-PS and  SiO2 
nanoparticles (nominal diameter of 50 nm) were charac-
terized using dynamic light scattering and zeta potential 
measurements to determine their size distribution, stability 
and surface characteristics in water, PBS and under expo-
sure conditions (Table 1). Overall the results confirmed that 
exposure to cell culture medium with serum led to biomol-
ecule adsorption and corona formation, as reported for the 
same nanoparticles in similar studies (Kim et al. 2011; Shap-
ero et al. 2011; Wang et al. 2013a, b, 2018). Importantly, 
characterization of the dispersions after 24 h incubation in 
the conditions used for cellular studies confirmed that the 
nanoparticle dispersions remained stable over the duration 
of the experiments with cells.

Apoptosis and necrosis after exposure 
to nanoparticles

As a first step, to investigate how MPI macrophages 
responded to  NH2-PS and  SiO2 nanoparticles, an Annexin V/
SYTOX double staining was used to determine whether cell 
death was present and eventually to discriminate apoptotic 

and necrotic cells. Annexin V staining allows to moni-
tor phosphatidylserine appearance on the cell membrane, 
which is an early sign of apoptosis. SYTOX staining is used 
to detect an eventual increase in cell membrane permeabil-
ity, as an indication of cell death (Fig. 1a, b, Supplementary 
Figure S1). In addition, activation of effector caspases 3/7 
upon nanoparticle exposure (Fig. 1c) was also measured. 
Interestingly, Annexin V/SYTOX staining of cells exposed 
to  NH2-PS nanoparticles for 24 h showed an increasing num-
ber of necrotic cells at increasing doses. Though SYTOX 
staining does not allow to discriminate primary and sec-
ondary necrosis, the absence of clear Annexin V staining at 
24 h (also visible in the double scatter plots shown in Sup-
plementary Figure S1) suggested that, as opposed to what 
is usually observed with these nanoparticles in other cell 
models (Bexiga et al. 2011; Wang et al. 2013a, b), in MPI 
macrophages exposure to  NH2-PS nanoparticles led to cell 
death, but not via apoptosis. This is in agreement with previ-
ous observations of necrotic cell death induced by the same 
nanoparticles in RAW 364.7 macrophages (Hansjosten et al. 
2018). On the contrary,  SiO2 nanoparticles displayed a clear 
apoptotic signature, with both an elevation of the percent-
age of apoptotic cells and increases in caspase 3/7 activity. 
Similar results were obtained—again—in RAW 364.7 mac-
rophages (Wilhelmi et al. 2012).

As an additional control, fluorescently labelled variants of 
similar nanoparticles were used to confirm nanoparticle uptake 

Table 1  Nanoparticle 
characterization by dynamic 
light scattering and zeta 
potential measurements

Z-average and polydispersity index (PDI) or average hydrodynamic diameter of 100 µg/ml 50 nm  NH2-PS 
and  SiO2 nanoparticles after dispersion in water, PBS and complete cell culture medium supplemented 
with serum  (CCM) (0 h) and after 24 h of incubation at 37  °C and 5%  CO2 (24 h). Either cumulant or 
CONTIN analyses were performed for measurements in buffer and CCM, respectively, to account for mul-
timodal peaks which arise in CCM because of co-detection of the excess free proteins in solution. All val-
ues are reported as the mean and standard error of the mean (± SEM) of the results obtained from three 
independent replicate dispersions
a z-average hydrodynamic diameter extracted by cumulant analysis of the data
b Polydispersity index (PDI) from cumulant fitting of the data
c Average hydrodynamic diameter determined from CONTIN size distribution

Sample Medium Diametera 
(z-average, 
nm)

PDIb Diameterc (nm) Zeta potential (mV)

NH2-PS nanoparticles 0 h in  H2O 56 ± 1 0.08 ± 0.02 – 35 ± 1
24 h in  H2O 57 ± 1 0.16 ± 0.01 – 28 ± 4
0 h in PBS 103 ± 7 0.36 ± 0.01 – 18 ± 1
24 h in PBS 75 ± 17 0.53 ± 0.24 – 24 ± 1
0 h in CCM – – 161 ± 31 − 8 ± 1
24 h in CCM – – 141 ± 25 − 9 ± 1

SiO2 nanoparticles 0 h in  H2O 69 ± 1 0.28 ± 0.01 – − 26 ± 1
24 h in  H2O 68 ± 1 0.18 ± 0.01 – − 23 ± 1
0 h in PBS 83 ± 1 0.40 ± 0.02 – − 14 ± 1
24 h in PBS 54 ± 1 0.23 ± 0.01 – − 19 ± 3
0 h in CCM – – 101 ± 9 − 9 ± 1
24 h in CCM – – 155 ± 7 − 9 ± 1
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by the MPI cells. Fluorescently labelled COOH-PS were used 
as an alternative source of polystyrene nanoparticles of com-
parable size (no fluorescent variant of the  NH2-PS nanopar-
ticles is commercially available). As expected, exposure to 
50 nm fluorescently labelled  SiO2 nanoparticles and 40 nm 
fluorescently labelled carboxylated polystyrene COOH-PS 
confirmed that nanoparticle uptake in the macrophages was 
very high (Supplementary Figure S2). We then performed a 
detailed time-resolved analysis of the mechanisms leading to 
the observed cell death, to characterize further the differences 
in the response to the two materials.

Nanoparticle impact on oxidative stress 
(cellular and mitochondrial ROS levels and lipid 
peroxidation)

MPI cells were exposed to different concentrations of 
 NH2-PS and  SiO2 nanoparticles to analyze impact on a 
series of cellular end-points at different times. Interestingly, 
flow cytometry analysis showed that cells exposed to  SiO2 
nanoparticles displayed clear changes in their forward scatter 
(FSC, which is related to changes in cell size) and side scat-
ter properties (SSC, which is related to changes in cellular 

Fig. 1  Activation of cell death in MPI cells exposed to  NH2-PS and 
 SiO2 nanoparticles. MPI cells were exposed for different times to dif-
ferent doses of nanoparticles, then Annexin V—SYTOX staining was 
used to monitor eventual presence of apoptotic cells and changes in 
cell membrane permeability. a Representative example of Annexin 
V—SYTOX double scatter plots after 8 h of exposure. b Percentage 
of intact cells (Annexin V-negative and no increased cell permeabil-
ity), apoptotic cells (Annexin V-positive cells without increase in cell 
permeability), necrotic cells (Annexin V-positive cells with increased 

cell permeability). 20000 cells were measured by flow cytometry 
(unless indicated) and the percentages in the different gated regions 
determined (see “Methods” for details). The results of two techni-
cal replicates are shown. For cells exposed to 100 µg/ml nanoparti-
cles due to the strong toxicity, it was possible to measure only around 
5000 cells (instead of 20000). c Activation of the effector caspases 
3/7 upon nanoparticle exposure. The results of three technical repli-
cates are shown, together with their mean (indicated with a line), nor-
malized by the results in untreated control cells (dotted line at 100%)
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granularity (e.g. changes in vacuolization) already after only 
4 h of exposure. No alterations in forward and side scat-
ter were detected in cells exposed to  NH2-PS nanoparticles 
(except at the highest dosage and longest exposure time) 
(Supplementary Figure S3). This alone was already, indica-
tive of a distinct cell response to the two nanoparticle types.

We then examined eventual alterations in cellular ROS 
levels following exposure to the two nanoparticles. Altera-
tions of ROS levels have often been observed upon expo-
sure to nanoparticles. Some nanoparticles can trigger the 
direct generation of ROS on their surface (Buzea et al. 
2007; Soenen et al. 2011). A part of similar direct ROS 
production, secondary ROS can also be generated as a 
consequence of the damage induced by nanoparticles on 
cell organelles, or via interaction with cell surface recep-
tors and subsequent activation of intracellular signaling 
cascades (Soenen et al. 2011). Here, cellular ROS pro-
duction was measured by  H2DCFDA staining (Fig. 2a 
and Supplementary Figure S4). Already after 4 h of expo-
sure, cellular ROS levels increased in cells exposed to 

both nanoparticles, while at longer exposure times, they 
declined to—respectively—moderate and low levels, for 
cells exposed to, respectively,  NH2-PS and  SiO2 nanopar-
ticles. To determine whether the observed alterations in 
cellular ROS originated from mitochondrial ROS, cells 
were labelled with MitoSOX, which specifically measures 
superoxide production in the mitochondria (Fig. 2b and 
Supplementary Figure S5). In cells exposed to  NH2-PS 
nanoparticles, mitochondrial ROS was detected only after 
24 h, whereas  SiO2 nanoparticles induced mitochondrial 
ROS formation already after 4 h of exposure, with a steady 
increase over the following hours. These findings sug-
gested that  NH2-PS and  SiO2 nanoparticles might have 
distinct effects on mitochondrial function.

Increased ROS levels can also induce lipid peroxida-
tion in the cell membrane, which in turn can activate pro-
apoptotic molecules. Thus, lipid peroxidation was assessed 
using BODIPY Ceramide-11 staining (Fig. 2c and Supple-
mentary Figure S6). Both  NH2-PS and  SiO2 nanoparticles 
exhibited a similar increase in lipid peroxidation after 8 
and 24 h of exposure.

Fig. 2  ROS production and lipid peroxidation in MPI cells after 
exposure to  NH2-PS and  SiO2 nanoparticles. MPI cells were exposed 
to different doses of  NH2-PS and  SiO2 nanoparticles for the indicated 
times, thus cellular ROS (a), mitochondrial ROS (b) and lipid peroxi-
dation (c) were determined, using, respectively, an  H2DCFDA assay, 
MitoSOX and by BODIPY Ceramide-11 (C11). The results of two 

technical replicates are shown, together with their mean (indicated 
with a line), normalized by the results in untreated control cells (dot-
ted line at 100%). Representative examples of the corresponding cell 
fluorescence intensity distributions are shown in Supplementary Fig-
ures S4–6
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Nanoparticle impact on mitochondria (metabolic 
activity, mitochondrial membrane potential 
and intracellular calcium)

Next, we characterized further nanoparticle impact on 
mitochondrial functions. Mitochondria play an important 
role in the regulation of cellular metabolism, apoptosis 
and immune responses, and are also in close functional 
contact with other cell organelles involved in the uptake 
of nanoparticles, such as endosomes and lysosomes (Auten 
and Davis 2009). Mitochondrial damage is involved in cell 
death mechanisms such as apoptosis, oxytosis, ferroptosis, 
necroptosis, among others (Tait and Green 2013; Thornton 
and Hagberg 2015; Neitemeier et al. 2017). To determine 
nanoparticle impact on mitochondrial functions, cellular 
metabolic activity (as measured by the MTT assay), mito-
chondrial membrane potential and intracellular calcium 
release were monitored over time. When MPI cells were 
exposed to  NH2-PS nanoparticles, the cellular metabolic 
activity declined very fast (Fig. 3a). On the other hand, 
in cells exposed to  SiO2 nanoparticles, a decreased cel-
lular metabolic activity was observed only after 24 h. The 
mitochondrial membrane potential was assessed by TMRE 

(tetramethylrhodamine ethyl ester), a positively charged 
compound sequestered by the negatively charged mito-
chondria. Here, a loss in TMRE staining indicates a loss 
in mitochondrial membrane potential or membrane depo-
larization. Surprisingly, exposure to  NH2-PS nanoparti-
cles for concentrations up to 50 µg/ml resulted in a steady 
increase of mitochondrial membrane potential (Fig. 3b and 
Supplementary Figure S7). On the contrary, for the higher 
 NH2-PS nanoparticle doses and in cells exposed to the 
 SiO2 nanoparticles a gradual mitochondrial depolariza-
tion was observed over time, as expected when strong cell 
death is observed. In addition to mitochondrial membrane 
potential, intracellular calcium levels were also monitored. 
An increase in intracellular calcium can affect intracellular 
signaling pathways and trigger cell death (Duchen 2000; 
Finkel et al. 2015). Staining for intracellular calcium by 
the calcium indicator rhodamine-2 AM revealed that expo-
sure to both  NH2-PS and  SiO2 nanoparticles induced cal-
cium accumulation. Interestingly, the effect was observed 
only after 24 and 4 h of exposure, respectively (Fig. 3c and 
Supplementary Figure S8), time frames consistent with 
the observed alterations in mitochondrial ROS production 
(Fig. 2b).

Fig. 3  Effect of  NH2-PS and  SiO2 nanoparticles on mitochondria in 
MPI cells. MPI cells were exposed to different doses of  NH2-PS and 
 SiO2 nanoparticles for the indicated times, thus metabolic activity 
(a), mitochondrial membrane potential (b) and intracellular calcium 
levels (c) were monitored, respectively, by MTT assay, TMRE stain-
ing and with the calcium indicator rhodamine-2 AM. The results of 

technical replicates are shown together with their mean (indicated 
with a line), normalized by the results in untreated control cells (dot-
ted line at 100%). Representative examples of the corresponding cell 
fluorescence intensity distributions are shown in Supplementary Fig-
ures S7–8
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Nanoparticle impact on lysosomes

As a next step, we investigated whether lysosomal altera-
tions were induced on the macrophages. It has been previ-
ously shown that lysosomal alterations play a major role in 
 NH2-PS nanoparticle-induced cell death in other cell mod-
els, with lysosomal swelling, followed by lysosomal rupture 
and release of the lysosomal content in the cytosol, ulti-
mately activating apoptosis (Wang et al. 2013a, b). Interest-
ingly, on MPI macrophages, LysoTracker staining showed no 
signs of lysosomal swelling following exposure to  NH2-PS 
nanoparticles (Fig. 4a, b). No changes in LysoTracker stain-
ing were detected also in cells exposed to  SiO2 nanopar-
ticles. Only at the later exposure times, a population with 
a decrease in LysoTracker Red staining started to appear. 
Although this result alone does not allow to fully exclude 
involvement of lysosomal injury in the mechanism of cell 
death, LysoTracker staining combined with the metabolic 
activity assays for the same conditions suggests that those 
cells are most likely dead or dying cells which cannot be 
stained by LysoTracker. Additionally, no evident sign of lys-
osomal swelling was observed also via imaging and immu-
nostaining with LAMP1A (a general marker for the lysoso-
mal compartment) (Fig. 4c and Supplementary Figure S9).

Endoplasmic reticulum stress and autophagy

As a final step, we examined potential activation of ER stress 
and/or autophagy in response to the two nanoparticles, as 
previously observed with other systems (Cao et al. 2017; 
Wang et al. 2018). To assess whether ER stress or autophagy 
were involved, quantitative real-time PCR was performed 
to measure, respectively, CHOP and beclin-1 expression at 
different exposure times. CHOP expression in cells is usu-
ally low and increases when ER stress is present. High lev-
els of CHOP will eventually result in apoptosis (Cao et al. 
2017). Beclin-1 on the other hand is involved in the initia-
tion of autophagy by forming the isolation membrane, which 
engulfs cytoplasmic components to make the autophago-
some. High levels of beclin-1 will also result in the induction 
of apoptosis (Kang et al. 2011). Interestingly, exposure to 
 NH2-PS nanoparticles resulted in a strong increase of CHOP 
expression (Fig. 5a), indicative of ER stress induction. This 
is particularly surprising as the ER stress-related CHOP 
expression is commonly associated with the activation of 
apoptosis which here was not detected (Fig. 1) (Cao et al. 
2017). On the contrary, no alteration of CHOP expression 
was observed in cells exposed to the  SiO2 nanoparticles. 
Furthermore, no alterations in beclin-1 were observed in 
cells exposed to the two nanoparticles (Fig. 5b). Similarly, 
LC3A/LC3B staining of autophagosomes did not show any 
evident change in cells exposed to the two nanoparticles 
(Fig. 5c and Supplementary Figure S10). Thus, no clear 

involvement of autophagy was observed by quantification 
of beclin-1 expression and LC3 staining.

Discussion

Nanoparticle accumulation in macrophages is commonly 
observed in the organs where they distribute, making nan-
oparticle impact on these cells a relevant parameter to be 
assessed in nanosafety. Given their unique features, includ-
ing—among others—their high nanoparticle uptake effi-
ciency, macrophages may respond to nanoparticles in dif-
ferent ways than what is usually observed in non-phagocytic 
cells.

Within this context, in this work, we studied in detail 
the response of MPI alveolar-like macrophages to two com-
mon nanoparticles, namely  NH2-PS and  SiO2 nanoparticles, 
well-characterized models used in many nanoparticle stud-
ies. While the  NH2-PS are a good example to study toxicity 
induced by positively charged materials, for the  SiO2 nano-
particles ambivalent toxic effects have been reported. In fact, 
silica nanoparticles are usually considered non-toxic (Bexiga 
et al. 2011; Shapero et al. 2011; Lesniak et al. 2012; Wang 
et al. 2013a, b, 2018; Ye et al. 2017). However, other inves-
tigations have demonstrated that  SiO2 nanoparticle expo-
sure can hamper cellular functioning (Wiemann et al. 2016; 
Mohamed et al. 2011; Lankoff et al. 2013; Kim et al. 2015).

While for toxicological studies, the cell-delivered dose 
should be determined to take into account differences in 
the way different materials settle on adherent cells (Thomas 
et al. 2018), our aim here was to detect potential differences 
in the mechanisms of toxicity induced by the two nanopar-
ticles. To this aim, a range of doses was selected to ensure 
cytotoxic responses were present, but not too strong, so that 
clear trends over time could be determined for the different 
selected endpoints and compared for the two materials. The 
time-resolved investigation allowed us to highlight unique 
features in the response of MPI macrophages to these two 
nanoparticle models.

While  NH2-PS nanoparticle-induced toxicity is usu-
ally driven by a strong impact on the lysosomes where the 
nanoparticles accumulate (Wang et al. 2013a, 2018), our 
results indicated that these nanoparticles showed a distinct 
behavior in MPI macrophages, without strong evidence of 
lysosomal swelling and of apoptosis. However, other inves-
tigations have shown the involvement of lysosomal injury 
in the mechanisms of toxicity induced by these nanoparti-
cles in RAW264.7 macrophages (Xia et al. 2008; Hsia et al. 
2019) and the observed loss of LysoTracker Red staining 
could also be interpreted as a sign of lysosomal malfunction-
ing, e.g. due to mild lysosomal membrane permeabilization 
(Wang et al. 2018). Clearly, exposure to  NH2-PS nanopar-
ticles caused a fast increase in cellular ROS production, 
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Fig. 4  Effect of  NH2-PS and  SiO2 nanoparticles on lysosomes in 
MPI cells. LysoTracker Red was used to monitor eventual lysoso-
mal alterations on MPI cells exposed for the indicated times to dif-
ferent doses of a  NH2-PS and b  SiO2 nanoparticles. Representative 
examples of LysoTracker Red distributions are shown. c Confocal 
microscopy images of MPI cells after 4 h of exposure to  NH2-PS and 

 SiO2 nanoparticles. Green: LAMP1A stained lysosomes; blue: DAPI 
stained nuclei. Scale bar: 20 µm. Additional images at different expo-
sure times are shown in Supplementary Figure S9. Overall the results 
suggest no evident alteration of the lysosomes after exposure to the 
nanoparticles (color figure online)
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followed at later times by mitochondrial ROS production 
and lipid peroxidation. In addition,  NH2-PS nanoparticles 
strongly affected mitochondrial membrane potential, with 
an interesting hyperpolarization observed in cells exposed 
to the lower doses, and—perhaps more expected—a loss of 
mitochondrial potential at the higher doses. Mitochondrial 
hyperpolarization has been observed in different cells of 
the immune system under stress conditions, including acti-
vated Fas signaling (Banki et al. 1999; Beltran et al. 2002) 
and hypoxia (Gao and Wolin 2008). Increased cellular ROS 
production plays a critical role in this phenomenon (Gal-
loway and Yoon 2012). Hyperpolarization itself can induce 

ROS, and oxidative stress will finally impair the mitochon-
drial machinery causing mitochondrial depolarization, as 
seen here for cells exposed to the highest concentration of 
 NH2-PS nanoparticles. Mitochondrial hyperpolarization also 
enhances mitochondrial superoxide production (Murphy 
2009; Pak et al. 2013), however, cells exposed to  NH2-PS 
nanoparticles displayed an increase in mitochondrial ROS 
only after 24 h of exposure and not at earlier times. It has 
been suggested that an initial hyperpolarization can be part 
of a defense mechanism to avoid apoptotic cell death. This 
has been supported by the observation that lymphocytes 
from patients with systemic lupus erythematosus have 

Fig. 5  Effect of  NH2-PS and  SiO2 nanoparticles on ER stress and 
autophagy in MPI cells. Eventual induction of ER stress (a) and 
autophagy (b) were monitored by measuring by RTqPCR the expres-
sion levels of, respectively, CHOP and Beclin-1 in MPI cells exposed 
for different times to different doses of  NH2-PS and  SiO2 nanoparti-
cles. The results are the gene expression levels of CHOP (a) and Bec-
lin-1 (b), normalized by the expression levels of GAPDH in the same 
conditions. Data are expressed as fold increase compared to untreated 
control cells. The results obtained in four individual experiments are 

shown, together with their average (indicated with a line). c Confocal 
microscopy images of MPI cells after 4 h of exposure to  NH2-PS and 
 SiO2 nanoparticles. Red: LC3A and LC3B staining of autophagoso-
mal membranes; blue: DAPI-stained nuclei. Scale bar: 10 µm. Addi-
tional images at different exposure times are shown in Supplementary 
Figure S10. Overall CHOP results suggested activation of ER stress 
in cells exposed to the  NH2-PS, while Beclin-1 results and LC3 stain-
ing indicated no evident induction of autophagy in all conditions 
(color figure online)
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hyperpolarized mitochondria which are resistant to apop-
tosis (Perl et al. 2012). Similar responses may be triggered 
here in cells exposed to the lower doses of the  NH2-PS nano-
particles. Further research is required to fully confirm this 
interpretation.

Upregulation of the gene expression of CHOP was also 
observed in response to  NH2-PS exposure, indicative of ER 
stress, which usually triggers apoptosis. However, surpris-
ingly, regardless of the effect on mitochondrial membrane 
potential and indication of ER stress activation, no signs of 
apoptosis were detected. A possible interpretation of this 
series of events following  NH2-PS nanoparticle exposure 
is that, given the high uptake efficiency of macrophages, 
these nanoparticles are still toxic to cells, but without the 
cells having the time to activate a clear apoptotic cell death 
(also without signs of clear swelling in the lysosomes where 
nanoparticles accumulate).

On the other hand,  SiO2 nanoparticle exposure caused 
cell death in MPI macrophages, characterized by classic 
apoptotic features such as increased mitochondrial ROS, 
mitochondrial depolarization, caspase activation and expo-
sure of phosphatidylserine on the cell membrane. Similar 
results with  SiO2 nanoparticles were obtained on RAW 
364.7 macrophages (Wilhelmi et al. 2012), and other stud-
ies where alterations in inflammatory responses or cellular 
functions in different types of immune cells were reported 
(Mohamed et al. 2011; Lankoff et al. 2013; Kim et al. 2015). 
Similar to  NH2-PS nanoparticles exposure, also with these 
nanoparticles no evident lysosomal swelling was detected.

Additionally, while previous studies have observed that 
in some conditions exposure to silica can induce autophagy, 
here quantification of beclin-1 expression and LC3A/B stain-
ing did not show clear involvement of autophagy (Herd et al. 
2011; Marquardt et al. 2017). A more precise analysis would 
be needed to fully elucidate the potential role of autophagy 
in the observed mechanisms of toxicity, e.g. by measuring 
the autophagic flux in the presence and absence of lyso-
somal inhibitors. Overall, these results clearly showed that 
the MPI cells responded in very different ways to the two 
selected nanoparticle models, with some interesting differ-
ences in comparison to what reported for the same materials 
in several other cell models. It would be important, in the 
future, to perform similar time-resolved studies using other 
macrophage models (for instance human monocyte-derived 
macrophages) and compare the observed responses to deter-
mine which model may provide data of higher relevance for 
humans.

Time-resolved approaches such as we show here can 
be used to determine the series of events triggered in cells 
following exposure to nanoparticles, and in this way deter-
mine the mechanisms involved and differences in response 
to different materials. Additionally, the inclusion of more 
representative routes for delivering the nanoparticles to the 

model cells, e.g., by air–liquid interface exposure (Frijns 
et al. 2017), could be beneficial to evaluate more realistically 
the interaction of nanoparticles and cells.

On a broader perspective, given the heterogeneity of 
tissue-specific macrophages, it would be interesting to per-
form similar time-resolved studies on resident macrophages 
of different origin, representative of the different organs in 
which nanoparticles distribute. For such studies, the cell-
delivered dose should be determined, to ensure that realis-
tic doses are applied, corresponding to the tissue-delivered 
doses observed in vivo. This could contribute to determine 
tissue-specific responses, and in this way to screen in vitro 
for potential nanoparticle outcomes at organ level. Indeed, it 
has been proposed that macrophages could be used for first 
tier screening of nanoparticle-induced effects in the different 
organs in which they distribute (Wiemann et al. 2016; Bhat-
tacharya et al. 2017). On a broader context, selecting the 
correct cell models is well-known to be a crucial step when 
evaluating nanoparticle (but not only) toxicity in vitro, and 
clearly it is even more so, when focusing on highly special-
ized cells such as the macrophages. Cell lines such as the 
MPI alveolar-like macrophages used for this study, preserv-
ing primary cell characteristics without the usual restrictions 
in cell availability of primary cells, could be extremely use-
ful models for mechanistic nanosafety investigations.
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