25 research outputs found

    The effects of feed restriction, time of day and time since feeding on behavioral and physiological indicators of hunger in broiler breeder hens

    Get PDF
    Broiler breeder chickens are commercially feed restricted to slow their growth and improve their health and production, however, there is research demonstrating that this leads to chronic hunger resulting in poor welfare. A challenge in these studies is to account for possible daily rhythms or the effects of time since last meal on measures relating hunger. To address this, we used 3 feed treatments: AL (ad libitum fed), Ram (restricted, fed in the morning), and Rpm (restricted, fed in the afternoon) to control for diurnal effects. We then conducted foraging motivation tests and collected home pen behavior and physiological samples at 4 times relative to feeding throughout a 24-h period. The feed treatment had the largest influence on the data, with AL birds weighing more, having lower concentrations of plasma NEFA, and mRNA expression of AGRP and NPY alongside higher expression of POMC in the basal hypothalamus than Ram or Rpm birds (P &lt; 0.001). R birds were more successful at and had a shorter latency to complete the motivation test, and did more walking and less feeding than AL birds in the home pen (P &lt; 0.01). There was little effect of time since last meal on many measures (P &gt; 0.05) but AGRP expression was highest in the basal hypothalamus shortly after a meal (P &lt; 0.05), blood plasma NEFA was higher in R birds just before feeding (P &lt; 0.001) and glucose was higher in Ram birds just after feeding (P &lt; 0.001), and the latency to complete the motivation test was shortest before the next meal (P &lt; 0.05). Time of day effects were mainly found in the difference in activity levels in the home pen when during lights on and lights off periods. In conclusion, many behavioral and physiological hunger measures were not significantly influenced by time of day or time since the last meal. For the measures that do change, future studies should be designed so that sampling is balanced in such a way as to minimize bias due to these effects.</p

    α-Synuclein seeding activity in duodenum biopsies from Parkinson's disease patients

    Get PDF
    Abnormal deposition of α-synuclein is a key feature and biomarker of Parkinson's disease. α-Synuclein aggregates can propagate themselves by a prion-like seeding-based mechanism within and between tissues and are hypothesized to move between the intestine and brain. α-Synuclein RT-QuIC seed amplification assays have detected Parkinson's-associated α-synuclein in multiple biospecimens including post-mortem colon samples. Here we show intra vitam detection of seeds in duodenum biopsies from 22/23 Parkinson's patients, but not in 6 healthy controls by RT-QuICR. In contrast, no tau seeding activity was detected in any of the biopsies. Our seed amplifications provide evidence that the upper intestine contains a form(s) of α-synuclein with self-propagating activity. The diagnostic sensitivity and specificity for PD in this biopsy panel were 95.7% and 100% respectively. End-point dilution analysis indicated up to 106 SD50 seeding units per mg of tissue with positivity in two contemporaneous biopsies from individual patients suggesting widespread distribution within the superior and descending parts of duodenum. Our detection of α-synuclein seeding activity in duodenum biopsies of Parkinson's disease patients suggests not only that such analyses may be useful in ante-mortem diagnosis, but also that the duodenum may be a source or a destination for pathological, self-propagating α-synuclein assemblies

    Prion Seeding Activities of Mouse Scrapie Strains with Divergent PrPSc Protease Sensitivities and Amyloid Plaque Content Using RT-QuIC and eQuIC

    Get PDF
    Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10-8 and 10-13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had no immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc

    Elevated basal serum tryptase identifies a multisystem disorder associated with increased TPSAB1 copy number

    Get PDF
    Elevated basal serum tryptase levels are present in 4-6% of the general population, but the cause and relevance of such increases are unknown. Previously, we described subjects with dominantly inherited elevated basal serum tryptase levels associated with multisystem complaints including cutaneous flushing and pruritus, dysautonomia, functional gastrointestinal symptoms, chronic pain, and connective tissue abnormalities, including joint hypermobility. Here we report the identification of germline duplications and triplications in the TPSAB1 gene encoding α-tryptase that segregate with inherited increases in basal serum tryptase levels in 35 families presenting with associated multisystem complaints. Individuals harboring alleles encoding three copies of α-tryptase had higher basal serum levels of tryptase and were more symptomatic than those with alleles encoding two copies, suggesting a gene-dose effect. Further, we found in two additional cohorts (172 individuals) that elevated basal serum tryptase levels were exclusively associated with duplication of α-tryptase-encoding sequence in TPSAB1, and affected individuals reported symptom complexes seen in our initial familial cohort. Thus, our findings link duplications in TPSAB1 with irritable bowel syndrome, cutaneous complaints, connective tissue abnormalities, and dysautonomia

    Real-Time Quaking- Induced Conversion Assays for Prion Diseases, Synucleinopathies, and Tauopathies

    No full text
    Prion diseases, synucleinopathies and tauopathies are neurodegenerative disorders characterized by deposition of abnormal protein aggregates in brain and other tissues. These aggregates consist of misfolded forms of prion, α-synuclein (αSyn), or tau proteins that cause neurodegeneration and represent hallmarks of these disorders. A main challenge in the management of these diseases is the accurate detection and differentiation of these abnormal proteins during the early stages of disease before the onset of severe clinical symptoms. Unfortunately, many clinical manifestations may occur only after neuronal damage is already advanced and definite diagnoses typically require post-mortem neuropathological analysis. Over the last decade, several methods have been developed to increase the sensitivity of prion detection with the aim of finding reliable assays for the accurate diagnosis of prion disorders. Among these, the real-time quaking-induced conversion (RT–QuIC) assay now provides a validated diagnostic tool for human patients, with positive results being accepted as an official criterion for a diagnosis of probable prion disease in multiple countries. In recent years, applications of this approach to the diagnosis of other prion-like disorders, such as synucleinopathies and tauopathies, have been developed. In this review, we summarize the current knowledge on the use of the RT-QuIC assays for human proteopathies

    Hypertension fails to disrupt white matter integrity in young or aged Fisher (F44) Cyp1a1Ren2 transgenic rats

    No full text
    Hypertension is linked with an increased risk of white matter hyperintensities; however, recent findings have questioned this association. We examined whether hypertension and additional cerebrovascular risk factors impacted on white matter integrity in an inducible hypertensive rat. No white matter hyperintensities were observed on magnetic resonance imaging either alone or in conjunction with ageing and high-fat diet. Aged hypertensive rats that were fed a high-fat diet had moderately reduced fractional anisotropy in the corpus callosum with no overt pathological features. Herein we show that moderate hypertension alone or with additional risk factors has minimal impact on white matter integrity in this model
    corecore