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Abstract

Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in
ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion
from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of
the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection
assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are
central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated
how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and
protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 1028 and 10213 were detected by RT-QuIC and eQuIC,
respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed
that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse
tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers,
but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice
expressing P101L PrPC. Although the brains of 263K-affected mice had little immunoblot-detectable PrPRes, RT-QuIC
indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison,
RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which
incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP
transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted
prion seeding assays detect diverse types of PrPSc.
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Introduction

Misfolding of cellular prion protein (PrPC) into the scrapie prion

protein (PrPSc) isoform is a key event in the pathogenesis of prion

disorders [1,2]. PrPSc is the main component of the TSE infectious

agent [3–8] and is able to propagate itself by seeding and

templating a conformational change in PrPC, a glycosylpho-

sphatidylinositol (GPI)-anchored glycoprotein [2,4,9,10]. Unlike

PrPC, PrPSc tends to be aggregated [11–15], partially resistant to

proteases [3,14], rich in beta sheet [16–20], and lacking in native

alpha helices [16,18,19].

In the brain PrPSc can accumulate in deposits ranging from

large fibrillar amyloid plaques [21–24] to smaller diffuse non-

amyloid oligomers [25,26]. Diffuse forms are predominant in

many human and animal TSEs. However, PrPSc amyloid is

a prominent feature of some genetic human prion diseases such as

Gerstmann-Sträussler-Scheinker syndrome (GSS) [27] and prion

protein cerebral amyloid angiopathy (PrP-CAA) [28]. In numer-

ous TSE types, both amyloid and non-amyloid deposits can be

found in the same tissue. However, in scrapie-infected transgenic

mice expressing prion protein lacking the glycosylphosphatidyli-

nositol anchor (GPI), PrPSc appears to be exclusively contained in

amyloid plaques [29,30]. Both large amyloid fibrils and non-

amyloid aggregates of PrPSc are associated with high levels of

infectivity [13,29], but smaller non-fibrillar oligomers have been

found to have the highest specific infectivity per unit protein with

several scrapie strains [13,31]. Nonetheless, the relative contribu-

tions of different PrPSc aggregates to prion propagation and TSE

pathogenesis in vivo remains unclear.

Protease-resistant PrPSc (PrPRes) is often used as a definitive

biological marker for TSE infections, but several studies have

shown that infectivity is not always well-correlated with PrPRes

level [32–35]. Indeed, infectivity can sometimes be associated with

forms of PrPSc that are largely proteinase K (PK)-sensitive (sPrPSc)
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[36]. For instance, when inoculated into knock-in transgenic mice

homozygous for P101L PrPC (101LL), 139A scrapie leads to high

PrPRes [37] and infectivity levels in the brain while 263K scrapie

elicits similarly high infectivity levels but little or no PrPRes [35].

These and many other observations emphasize the diversity of

abnormal TSE-associated PrP structures.

The ability to detect various types of PrPSc is important in TSE

diagnostics. A number of cell-free reactions have emerged which

allow highly sensitive PrPSc detection based on in vitro prion-

seeded polymerization and conformational conversion of brain-

derived PrPC or recombinant PrPC (rPrPSen) (for reviews, see

[38,39]). Among the most sensitive, rapid and practical of these

assays are the real time quaking induced conversion (RT-QuIC)

[40–43] and enhanced QuIC (eQuIC) [44] assays. RT-QuIC is

a shaken, multi-well plate-format reaction that is based on the

detection of PrPSc-seeded recombinant PrP amyloid fibrils using

an amyloid-sensitive fluorescent dye, thioflavin T (ThT). In an

end-point dilution mode, RT-QuIC can be quantitative in

a manner that is conceptually analogous to the end-point dilution

titrations classically used in animal bioassays [41,45]. The eQuIC

assay incorporates the use of a selective conformational antibody

15B3 to capture PrP aggregates in biological fluids such as blood

plasma [44]. However, the extent to which divergent types of

PrPSc can seed the polymerization of PrPC into amyloid fibrils is

not clear.

Building on recent successes in using the RT-QuIC and eQuIC

reactions to amplify small amounts of hamster, sheep, cervid and

human PrPRes [39,41–47], we have now adapted these assays to

murine-adapted scrapie strains to explore how prion seeding

activity in these assays depends on PrPSc i) GPI anchoring, ii)

amyloid vs non-amyloid ultrastructure, and iii) PK-sensitivity.

Moreover, the availability of mouse TSE-adapted RT-QuIC and

eQuIC reactions should facilitate fundamental studies of TSE

diseases because mouse models are used extensively to reveal the

biological principles of prion transmission and pathogenesis.

Results

Development of a mouse RT-QuIC assay
Previous studies have indicated that two key interactive

parameters in the development of RT-QuIC reactions for new

prion strains and host species are the rPrPSen substrate and the

NaCl concentration in the RT-QuIC buffer [41,43,44]. To adapt

the RT-QuIC reaction to the detection of mouse PrPSc, we tested

different NaCl concentrations in combination with either full-

length mouse rPrPSen residues 23–231 (moPrPSen23–231) or N-

terminally truncated mouse rPrPSen residues 90–231 (moPrPSen

90–231) as substrates. Using 130 mM NaCl in combination with

moPrPSen 23–231, we could detect 561026 brain tissue dilutions

containing ,200 fg of PrPRes from RML scrapie-infected wild-

type (WT) mice. No spontaneous (unseeded) fibrillization of

rPrPRes amyloid (rPrPspon) was detected in control reactions

containing normal brain homogenate (NBH) (Figure 1). In

contrast, NBH controls gave rPrPspon when moPrPSen23–231

was used with higher NaCl concentrations ($200 mM). When

using moPrPC 90–231 as substrate, rPrPspon generation was

observed within 20–30 h with all NaCl concentrations tested (130–

400 mM; data not shown).

RT-QuIC of additional mouse-adapted scrapie strains in
wild-type mice
To gauge the strain-dependence of murine RT-QuIC analyses,

we also analyzed the 22L and ME7 scrapie strains in brain

homogenates from clinically affected WT C57BL/10 mice

(Figure 2A). With both of these strains, seeding activity was

detected in all replicate reactions seeded with dilutions of 561027.

Such dilutions contained ,20 fg PrPRes as estimated by semi-

quantitative immunoblotting of PK-treated brain homogenates

(data not shown). The rapid negative-to-positive conversion of

individual wells occasionally caused the stepwise increases in the

fluorescence averaged from all wells. With the RML strain,

uniformly positive replicates were obtained with 561028 dilution

containing ,2 fg PrPRes. The relative concentrations of prion

seeding activity, i.e., the number of seeding doses giving 50%

positive replicate reactions (SD50) per unit of tissue, determined by

end-point dilution RT-QuIC [41] were 6.42+/20.38 log SD50 per

mg brain for 22L and ME7 WT, and 7.92+/20.63 for RML WT

(Figure 2B, light purple bars). These results show that abundant

RT-QuIC seeding activity is generated in brain tissue by multiple

murine scrapie strains.

RT-QuIC analysis of anchorless PrP (GPI2) brain tissue
To evaluate the seeding activity associated with predominantly

amyloid forms of PrPSc, we analyzed the same scrapie strains in

transgenic mice that express only GPI-anchorless PrP (GPI2 mice)

[29,30]. As mentioned above, these mice accumulate PrPSc that, in

contrast to the largely non-amyloid diffuse and amorphous

accumulations in wild-type mice, appears to be exclusively

contained in amyloid fibrils and plaques. By immunoblotting of

PK-treated brain homogenates, the levels of PrPRes present in the

brains of the GPI2 mice that we tested appeared to be less than or

comparable to the levels accumulating in WT mice (Figure 3).

However, quantitative immunoblot comparisons of heavily

glycosylated, GPI-anchored WT PrPRes with largely unglycosy-

lated, anchorless PrPRes can be difficult due to apparent

differences in the binding efficiency and/or immune detection of

these types of molecules on blotting membranes [30,48,49] (data

not shown). Furthermore, PrPRes levels in individual brains can

vary markedly during the prolonged and subtle clinical phase of

disease in the hemizygous GPI2 mice used in this study. Further

complicating matters, a recent study reported that analyses by

capture ELISA indicated that GPI2 mice can accumulate up to

25–50 fold more PrPRes than wild-type mice when inoculated with

the RML or ME7 strains of scrapie [50], a conclusion that has

differed markedly from at least some immunoblot-based determi-

nations. In any case, our measurements of seeding activity by end-

point dilution RT-QuIC [41] using the moPrPSen 23–231

substrate revealed that hemizygous GPI2 mice infected with each

scrapie strain had SD50 concentrations that were indistinguishable

from their WT counterparts (Figure 2B, dark purple bars).

Interestingly, the same dilutions of brain homogenates from the

GPI2 mice gave much shorter lag phases than those from WT

mice (Figures 4A–C). Despite these differences in reaction kinetics,

we could not detect any difference between the GPI2 and WT-

seeded (RML) RT-QuIC products with respect to PK-resistant

fragments on SDS-PAGE (Figure 5, lanes 4 & 8). Overall, these

data indicate that predominantly amyloid forms of PrPSc have

abundant seeding activity and that samples of a given scrapie

strain with similar end-point dilutions (i.e. SD50/ml) can seed

strikingly different RT-QuIC reaction kinetics (i.e. lag phases)

depending on whether the host mouse expresses wild-type or

GPI2 PrPC.

Seeding activity in mice with little PrPRes

To determine if prion seeding activity can be detected in hosts

with clinical TSE disease but little or no detectable PrPRes, we

compared two scrapie strains in knock-in transgenic mice

homozygous for P101L PrPC (101LL mice) [51]. Inoculation of

RT-QuIC and eQuIC with Mouse Scrapie Strains
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the 263K scrapie strain causes TSE disease and high infectivity

titers in the brain but little or no PrPRes in these mice as detected

by immunoblotting and other assays [35]. In contrast, when these

animals are inoculated with the 139A scrapie strain, they

accumulate readily detectable amounts of PrPRes [37]. Indeed,

our immunoblot-based comparisons indicated that brain synapto-

some preparations from the 263K-inoculated mice contained

,81-fold less PrPRes than those from 139A-inoculated mice in the

clinical phase of disease (Figure 6). Previous work has shown that

a majority of the infectivity fractionates with synaptosomes, and

that similar titers are found with these two strains ([35];

unpublished data). Despite the large difference in PrPRes levels

with these strains, we measured similar levels of seeding activity by

end-point dilution RT-QuIC (Figure 7 A, B, E). Moreover, the

profile of PK-resistant bands in the RT-QuIC reaction products

was also similar between the two strains (Figure 8, lanes 4 & 6).

Altogether, the data indicated abundant seeding activity associated

with both high-PrPRes and very low-PrPRes TSE strains.

Next we tested the PK-resistance of the seeding activities

associated with the 263K and 139A strains in the 101LL

transgenic mice (Figure 7 C, D). Synaptosomes were permeabi-

lized with Triton X-100 and treated with 100 mg/mL PK prior to

end-point dilution RT-QuIC. Following PK treatment, little

PrPRes was present in the 263K synaptosomes, and the expected

size shift in banding pattern was observed in 139A synaptosomes

(Figure 6). The PK treatment appeared to cause a modest (,4-

fold) decrease in the mean SD50/mg brain value for 263K

synaptosomes from three separate experiments (Figure 7E, red

bars), but this was of minimal statistical significance (p = 0.056). No

effect of PK treatment on the mean SD50/mg brain was seen with

139A synaptosomes (Figure 7E, orange bars). Overall, the results

suggested that the 263K seeding activity may be somewhat

sensitive to PK digestion, but less so than the total synaptosomal

PrP content.

eQuIC detection of prion seeding activity in mouse
plasma
Because blood plasma contains strong inhibitors of RT-QuIC

reactions, we used the eQuIC [44] assay to analyze plasma

samples from scrapie-infected mice. For this assay, beads coupled

with antibody 15B3 [52] were used to capture prion seeding

activity from plasma prior to detection by RT-QuIC [44].

Unexpectedly, in contrast to previous results obtained with RT-

QuIC alone, the use of moPrPSen 23–231 substrate with antibody

coated beads in the reaction didn’t support efficient PrPRes

detection. More optimal reaction conditions were observed using

moPrPSen 90–231 as substrate, 300 mM NaCl and 48uC (data not

shown). In contrast to the use of this substrate in RT-QuIC as

described above, we saw only rare spontaneous ThT-positive

responses in negative control reactions under these conditions with

beads present in the reaction well (see below). We tested the

reaction sensitivity by spiking uninfected mouse plasma with

dilutions of brain homogenates from RML-infected mice

(Figure 9). We observed positive reactions with dilutions as

extreme as 5610213 in 0.2 mL of plasma, which contained ,2 ag

of PrPRes. These results showed that capture of mouse PrPRes with

15B3 antibody allowed the detection of highly diluted mouse

seeding activity in plasma and enhanced RT-QuIC sensitivity by

,105.

In an attempt to improve the reaction speed and sensitivity, we

also tried adding fresh substrate to the reaction. This step has been

helpful in previously described eQuIC assays for hamster and

human prions in plasma samples [44]. However, with the murine-

adapted eQuIC system [44], we observed only decreased

sensitivity following substrate replacement (data not shown). Thus

we abandoned the substrate replacement step in subsequent

eQuIC assays for murine prions.

We also tested whether eQuIC (without substrate replacement)

can detect PrPSc naturally present in the plasma of scrapie-affected

mice. Samples were collected in the clinical phase of disease from 9

scrapie-affected WT mice inoculated with, RML or 79A scrapie

strains. eQuIC analysis showed that seven of these infected

samples gave multiple positive replicate reactions (three with 4/4

Figure 1. RT-QuIC NaCl titration in mouse RML scrapie model using moPrPC23–231 as substrate. RT-QuIC reactions were seeded with
561026 dilutions of normal brain homogenates (NBH) and WT RML scrapie BH containing,200 fg of PrPRes. Final concentrations of 130, 200, 300 and
400 mM NaCl were used. The vertical axis indicates the average ThT fluorescence from four replicate wells.
doi:10.1371/journal.pone.0048969.g001

RT-QuIC and eQuIC with Mouse Scrapie Strains
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Figure 2. RT-QuIC comparison of multiple mouse-adapted scrapie strains. (A), Brain tissues dilutions (561027 and 561028) from WT mice
infected with 22L, ME7 and RML scrapie strains were used to seed RT-QuIC reactions containing moPrPSen23–231 substrate. A final concentration of
130 mM NaCl was used for the reaction. The average ThT fluorescence from a set of quadruplicate wells is reported on the vertical axis. (B), RT-QuIC
end-point dilution analysis of brain homogenates from WT (light purple bars) and GPI– (dark purple bars) mice infected with 22L, ME7 and RML. Four
replicate wells were used for each brain homogenates dilution. The means6SD of Spearman-Kärber estimates of the SD50/mg brain tissue from three
different experiments are shown.
doi:10.1371/journal.pone.0048969.g002

Figure 3. PrPRes levels in brains of GPI2 and WT mice infected with multiple mouse-adapted scrapie strains. Normal brain homogenate
as well as 22L, RML and ME7-infected brain homogenates were compared by immunoblotting. The sample brain equivalents were loaded into each
lane. Lanes 1–2: WT and GPI2 NBH undiluted, respectively; Lanes 3–8: WT and GPI2 22L BH undiluted and serially diluted 2-fold and 4-fold; Lanes 9–
14: WT and GPI2 RML BH undiluted and serially diluted 2-fold and 4-fold; Lanes 15–20: WT and GPI2 ME7 BH undiluted and serially diluted 2-fold and
4-fold. A final concentration of 20 mg/mL PK was used to digest brain homogenates. Bands were detected with monoclonal antibody 6D11 as
described in materials and methods.
doi:10.1371/journal.pone.0048969.g003

RT-QuIC and eQuIC with Mouse Scrapie Strains
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positive replicates, two with 3/4 and two with 2/4) while the two

remaining scrapie-affected mice gave 1/4 positive replicates

(Figure 10A). In contrast, tests of 4 negative control mice gave

0/4 positive replicates, while 1 negative control specimen gave 1/4

positives, with the latter being an apparent false positive occurring

late in the reaction (over 55 h). We also got similarly positive

reactions (all 4/4 positive replicates) from plasma samples from

clinically affected WT and GPI2 mice inoculated with 22L scrapie

(Figure 10B). Collectively, our data showed the ability of the 15B3-

based eQuIC to detect a variety of different mouse-adapted

scrapie strains endogenous to plasma in the clinical phase of

disease.

Discussion

Here we demonstrate the in vitro amplified detection of mouse-

adapted scrapie strains by RT-QuIC and e-QuIC assay. In

general, the use of full-length moPrPSen23–231 and low NaCl

concentrations allowed rapid and sensitive mouse seed amplifica-

tion with a very low incidence of false positive reactions in the RT-

QuIC. The truncated moPrPSen90–231 substrate tended to

undergo spontaneous (prion seed-independent) conversion in

RT-QuIC reactions, but, curiously, did not show this tendency in

eQuIC reactions. We speculate that the presence of antibody

coated beads and/or the altered kinetics of the eQuIC might

Figure 4. Seeding activity and Log SD50 in GPI2 and WT mice
infected with multiple scrapie strains. RT-QuIC reactions were
seeded with 561027 and 561028 brain dilution from WT and GPI2 mice
infected with 22L (A) and ME7 (B) strains; 561028 and 561029 brain
dilutions from WT and GPI2 mice infected with RML were compared in
(C). moPrPSen 23–231 was used as substrate in all reactions.
doi:10.1371/journal.pone.0048969.g004

Figure 5. Total protein staining of seeded conversion products
from GPI2 and WT mice inoculated with RML or normal (NBH)
BH. 561026 dilutions were used to seed RT-QuIC reactions containing
moPrPC23–231 substrate. Reaction products were PK digested (+) at
final concentration of 10 mg/mL, or not (2) and analyzed by SDS-PAGE.
The gel was stained with a total protein stain (Deep Purple). Lanes 1,3:
no PK and PK-treated WT uninfected products; Lanes 2,4: no PK and PK-
treated WT RML infected products. Lane 5,7: no PK and PK-treated GPI2

uninfected products. Lane 6,8: no PK and PK-treated GPI2 RML infected
products. The oval indicates the weak,18 kDa bands while the bracket
represents the 12, 13 and 14 kDa bands in the PK-digested products of
the scrapie-seeded reactions (lanes 4 and 8).
doi:10.1371/journal.pone.0048969.g005

Figure 6. PrPRes levels in synaptosomal fractions from 263K-
and 139A-infected 101LL mice by immunoblotting. Lane 1: no
PK 101L 263K sample. Lanes 2–4: PK-treated 101L 263K samples
undiluted and serially diluted 3-fold and 9-fold. Lane 5: no PK 101L 139A
sample. Lanes 6–11: PK-treated 101L139A samples undiluted and
serially diluted 3-fold, 9-fold, 27-fold, 81-fold and 243-fold. A final
concentration of 100 mg/mL PK was used to digest synaptosomal
fractions as described in Materials and Methods. Samples were serially
diluted in sample buffer. Bands were detected with monoclonal
antibody 6D11.
doi:10.1371/journal.pone.0048969.g006

RT-QuIC and eQuIC with Mouse Scrapie Strains
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diminish spontaneous nucleation of moPrPSen90–231. By the same

token, interactions of moPrPSen23–231 with the beads might have

slowed the eQuIC reaction rate relative to that observed in the

absence of the beads. In any case, the versatility of RT-QuIC and

eQuIC is indicated by the sensitive detection of several mouse-

adapted scrapie strains with divergent PrPSc characteristics.

Another highly sensitive assay, protein misfolding cyclic

amplification (PMCA) [53], has been shown to be capable of

amplifying detection of mouse prion strains [54–60], but with

extended overall reaction time for optimal sensitivity. For instance,

Murayama and colleagues were able to detect Chandler (RML)

PrPRes in 1028 brain dilution after three rounds of amplification

taking .120 hours total [57]. In comparison, we have found that

RT-QuIC can detect comparable RML brain dilutions in

,40 hours.

Our detection of mouse PrPSc in plasma extends the use of the

e-QuIC, which was shown previously to detect prion seeding

activity endogenous to hamster plasma or spiked into human

plasma [44]. As with the latter studies, our mouse brain

homogenate spiking experiments showed that eQuIC was much

more sensitive (,100,000 fold) than RT-QuIC alone, allowing

detection up to 10213-fold dilutions of TSE brain homogenate

spiked into plasma.

In contrast to previous eQuIC studies with vCJD and hamster-

adapted scrapie [44], and other studies with PMCA [61], the

substrate replacement step in the eQuIC protocol was not helpful.

The reason for this difference is not clear. However, one possibility

is that the murine seed particles are more frangible or less

adherent to the beads or surface of the well than are the analogous

particles of other host species. If so, then removing reaction fluid to

refresh the substrate may deplete the seeds and nascent seeded

products and compromise, rather than enhance, the reaction rate

and sensitivity. Another possibility is that, relative to other

substrates such as hamster and human rPrPSen [44], mouse

Figure 7. PK-sensitivity of seeding activity in synaptosomes from 101LL mice infected with 263K and 139A. 561026 (1026) to 5610211

(10211) dilutions of PK-treated (100 mg/mL) (C, D) or control (-PK) (A, B) detergent permeabilized synaptosomal fractions. 263K (A, C) and 139A (B,
D) synaptosomal fractions were seeded into quadruplicate reactions. (E) End-point dilution RT-QuIC analysis of 263K (red bars) and 139A (orange
bars) strains. The mean 6SD of Spearman-Kärber estimates of the SD50/mg brain tissue from three different experiments are shown.
doi:10.1371/journal.pone.0048969.g007

RT-QuIC and eQuIC with Mouse Scrapie Strains
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rPrPSen may more readily adopt, and remain in, a state that is

readily susceptible to seeded conversion to amyloid; in that case, its

replacement would not accelerate the RT-QuIC reaction rate.

A key goal in TSE diagnostics is detection of prion seeding

activity in blood. Here we found that 82% of plasma samples from

mice clinically affected with multiple scrapie strains gave clear

positive reactions. However, in the remainder of the mice the

plasma seeding activity levels appeared to be near the detection

limit. This could be due to naturally low plasma PrPSc

concentrations, or to the presence of eQuIC inhibitors in plasma.

Nevertheless, negative control samples gave no spontaneous

conversion of the substrate within 55 h. Further work will be

needed to determine if additional gains in sensitivity can be made

without increasing the occurrence of false positive reactions.

Our comparison of the WT and GPI2 PrP seeds revealed

a curious discordance between seed concentration and reaction

speed. The reason for the markedly shorter lag phases of RT-

QuIC reactions seeded with infected brain from GPI2 mice is

unclear. Previous work has shown that for a given type of prion

seed, lag phases tend to be inversely correlated with seed

concentration in RT-QuIC reactions [41,43]. However, end-point

dilution QuIC indicated that the seed, or SD50, concentrations in

the brains of the GPI2 and WT mice that we examined were

indistinguishable for a given strain. End-point dilution RT-QuIC

should measure primarily the concentration, rather than the

relative seeding capacity, of individual seed particles. Clearly,

however, PrPSc seed particles can vary widely in size [13,31] and

presumably other characteristics such as seeding activity per

particle [13]. For example larger particles, such as plaques or

bundles of fibrils, could have many more seeding surfaces than

individual fibrils, protofilaments, or small oligomeric seeds. Given

that PrPSc in GPI2 PrP transgenic mice accumulates exclusively in

the form of large amyloid fibrils and plaques, we suspect that the

average seed particle is larger, with more seeding surfaces, than

those in WT brain homogenates. This higher per-particle seeding

activity could support faster RT-QuIC kinetics for a given overall

seed particle concentration. Alternatively, or additionally, the lack

of GPI anchors and/or glycans on the GPI2 PrPSc may allow

better access of rPrPSen substrate molecules to seeding sites on

PrPSc particles, thus improving the rate of conversion per unit seed

in the reaction.

Figure 8. Total protein staining of RT-QuIC conversion
products from reactions seeded with synaptosomes from
263K- and 139A-infected 101LL mice. RT-QuIC reactions were
seeded with 561026 dilutions of synaptosomal fractions. Products were
PK digested (+) or not (2) at final concentration of 10 mg/mL and
analyzed by SDS-PAGE. The gel was stained with Deep Purple protein
stain. Lanes 1,3: no PK and PK treated uninfected products; Lanes 2,4:
no PK and PK-treated 263K products. Lanes 5,6: no PK and PK-treated
139A products.The oval indicates the 18 and 19 kDa bands while the
bracket represents the 12, 13 and 14 kDa bands in the PK-digested
products of the scrapie-seeded reaction.
doi:10.1371/journal.pone.0048969.g008

Figure 9. eQuIC detection of RML PrPSc spiked into mouse plasma without substrate replacement. A 561026 dilution of NBH or 561024

to 5610213 dilutions of RML infected brain tissue containing from ,20 pg to 2 ag of PrPRes, respectively, were spiked into 0.2 mL of mouse plasma.
PrPSc was immunoprecipitated using 15B3-coated beads and a portion of the beads was used to seed quadruplicate eQuIC reactions. moPrPSen 90–
231 was used as a substrate in all reactions. The mean ThT fluorescence of the four replicates is shown.
doi:10.1371/journal.pone.0048969.g009
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The use of the 101LL PrP knock-in transgenic mice allowed us

to directly compare, in a single host model, the seeding activities

associated with scrapie strains giving high versus unusually low

brain levels of PrPRes in the clinical phase of disease. Our

observation of similar seed concentrations with the two strains

provided evidence that RT-QuIC seeding activity correlates more

closely with infectivity levels, which were equivalent, than with

PrPRes levels. The seeding activity of the low PrPRes 263K strain,

appeared to be marginally more sensitive to PK than that of 139A

but neither strain of seed was as sensitive to PK as the vast

majority of PrP in the infected brain tissue. Previous work has also

failed to identify levels of PK-sensitive PrPSc in this model that

could account for the discrepancy between PrPRes and TSE

infectivity [35].

Altogether, we have shown that RT-QuIC: 1) allows highly

rapid and sensitive detection of murine prion seeds; 2) works with

multiple mouse-adapted scrapie strains and types of tissues (e.g.

brain, brain fractions, plasma); and 3) detects diverse types of

PrPSc with different ultrastructures and protease sensitivities, with

seeding activity correlating more closely with infectivity than with

PrPRes levels. Given the extensive use of mouse TSE models to

elucidate the underlying biological principles of prion transmission

and pathogenesis, we predict that there will be many interesting

applications of the RT-QuIC and eQuIC assays for mouse-

adapted TSE strains.

Materials and Methods

Recombinant prion protein purification
Genes encoding mouse PrP (residues 23 to 231 and 90–231

accession no.M13685) were amplified and ligated into the pET24

and pET41 vector (Novagen), respectively. Hamster-sheep chi-

meric PrP (Syrian hamster residues 23 to 137 followed by sheep

residues 141 to 234 of the R154 Q171 polymorph [accession no.

AY907689]) was amplified and ligated into the pET41 vector

(EMD Biosciences), and sequences verified. Protein expression and

Figure 10. eQuIC detection of endogenous PrPSc in plasma from clinically ill, scrapie-infected mice. (A) plasma samples from five RML-
infected, four 79A-infected and three aliquots of plasma pooled from multiple uninfected mice were analyzed. (B) Plasma sample analyses from 22L-
infected WT and GPI2 mice (one each) and pooled plasma from uninfected mice (normal). Endogenous PrPSc was immunoprecipitated using 15B3-
coated beads and a portion of the beads were used to seed quadruplicate eQuIC reactions as described in Materials and Methods.
doi:10.1371/journal.pone.0048969.g010
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purification were performed as previously described [41]. Purity of

rPrPSen proteins was ,99% as estimated by SDS-PAGE,

immunoblotting, and mass spectrometry (data not shown).

Brain tissues homogenate preparation
Wild type C57BL/10 (Prnp+/+) mice and transgenic mice

(tg44) expressing only anchorless mouse PrP (GPI2 mice) were

infected with 22L, ME7 and RML (Chandler) scrapie strains and

euthanized at clinical stage of disease by deep isoflurane

anesthesia. In the case of the GPI2 mice, ME7 inoculations were

done with homozygous for the transgene (Tg44+/+), while the

RML and 22L scrapie inoculations were done in mice hemizygous

for the transgene (Tg44+/2). Brain tissues were collected and

10% (w/v) brain homogenates (BH) were prepared as previously

described [30]. Unless otherwise indicated, brain tissues were

homogenized using glass Dounce homogenizer in nine volumes

(10% w/v) of homogenation buffer (1X PBS pH 7.4, 0.5% Triton

X100 and 150 mM NaCl) supplemented with Complete Protease

Inhibitor w/EDTA (Roche). For the GPI2 ME7 sample, brain

tissue was homogenized in nine volumes (10% w/v) of 1X PBS,

pH 7.4, with 0.1 mM phenylmethanesulfonylfluoride (PMSF),

1 mg/mL aprotin and 0.7 mg/mL pepstatin A protease inhibitors

(Sigma). Following a 2 min 20006g clarification spin, the

supernatant was collected, aliquotted and stored at –80Cu at for

later use. For spiking experiments and RT-QuIC analyses, BHs

were thawed and serially diluted in 0.1% SDS in phosphate-

buffered saline (PBS) containing 130 mM NaCl and N2 medium

supplement (Gibco) as a source of carrier protein.

Production of synpatosomal preparations from 101LL
infected mice
Brain tissue was harvested from 101LL mice infected with 139A

or hamster 263K scrapie following cull by cervical dislocation at

a pre-defined clinical endpoint. Brain tissue from animals with

confirmed clinical and pathological disease was homogenized in

0.32 M sucrose at 100 mg/mL (w/v) and clarified by centrifuga-

tion at 20006g for 10 min at 4uC. Supernatants were transferred

to clean centrifuge tubes, and centrifuged at 12,0006g for 15 min

at 4uC. Pellets were washed twice in 0.32 M sucrose before being

resuspended in 0.32 M sucrose at 100 mg/mL wet weight tissue

equivalent.

Plasma sample préparation
For plasma collections normal and clinical mice were

anesthetized with isoflurane and exsanguinated via heart stick.

Blood was immediately transferred to a BD Vacutainer (sodium

citrate; Becton-Dickinson) tube and mixed gently. Samples were

centrifuged at 3000 rpm in a Eppendorf 5415R centrifuge for

15 min. The plasma fraction was transferred to a new tube and

stored at 220uC.

RT-QuIC
RT-QuIC was performed as previously described [41] except

for a few modifications. Briefly, 98 mL of fresh RT-QuIC buffer

(10 mM phosphate buffer pH 7.4; 130–400 mM NaCl; 0.1 mg/

mL rPrPSen; 10 mM Thioflavin T and 10 mM EDTA) were loaded

into wells of a black 96-well plate with a clear bottom (Nunc).

Reactions were seeded with 2 mL of the BH or synaptosomal

fraction dilutions in a final volume of 100 mL (1:50 dilution). All

reactions contained 0.002% final concentration of SDS. Plates

were sealed (Nalgene Nunc International sealer) and incubated in

a BMG Fluostar plate reader at 42uC for the designated period

with cycles of 1 min shaking (700 rpm double orbital) and 1 min

rest throughout the incubation. ThT fluorescence measurements

(450+/210 nm excitation and 480+/210 nm emission; bottom

read) were taken every 45 minutes.

SD50 calculations
SD50’s were determined by end point dilution RT-QuIC. In

brief, for Spearman-Kärber analysis [62] a dilution series with at

least one dilution giving 100% ThT positive replicates and at least

one dilution giving 0% ThT positive replicates was chosen. The

dilution giving 50% positive replicates was calculated as described

[41].

RT-QuIC products analysis
At the end of the reaction seeded conversion products were

recovered from the wells with 0.5% sulphobetaine, treated with

10 mg/mL of PK for 60 min at 37uC, and analyzed by SDS-

PAGE. The gel was stained with a total protein stain (Deep Purple,

GE Healthcare).

eQuIC: 15B3 coating of magnetic beads
Rat anti-mouse IgM Dynabeads (Invitrogen) were briefly

vortexed and 250 mL of beads (16108 total beads) were transferred

to new tubes for coating. Following incubation on a magnet, bead

storage buffer was discarded and the beads washed twice with 5

original suspended bead volumes of coating buffer (0.1% bovine

serum albumin in PBS). A final concentration of 0.38 mg/mL of

15B3 antibody (Prionics AG) was used to coat beads in 1 mL of

coating buffer.Tubes were incubated with ‘‘end-over-end’’ rota-

tion at room temperature for 2 h. Following three more washes

with coating buffer the beads were resuspended in 250 mL coating

buffer and stored at 4uC.

eQuIC of plasma samples
e-QuIC was performed as previously described [44], except for

a few modifications. Frozen plasma samples were thawed at 37uC
and centrifuged at 160006g for 1 min. The supernatant was used

for 15B3 immunoprecipitation. Pooled normal mouse plasma

(Innovative Research) was used as a scrapie-negative control in all

experiment. For spiking experiments, centrifuged pooled normal

plasma was combined with dilutions of brain homogenates (the

latter totaling #4% of the plasma volume) before 15B3

immunoprecipitation step. Forty mL of 15B3 coated beads were

used per 0.2 mL of plasma. 15B3-coated beads were first captured

from the coating buffer with a magnet, the coating buffer was

discarded, and 0.2 mL of Immunoprecipitation buffer (IP, Prionics

AG) was added. An equal volume of plasma was added and tubes

were incubated with ‘‘end-over-end’’ rotation for 24 h at 37uC.
The beads were incubated on the magnet for 2 minutes and

plasma-IP buffer mixture was discarded. Beads were washed twice

with 500 mL of Wash Buffer (WB, Prionics AG) and beads were

resuspended in 10 mL of 1XPBS (pH 7.4). The beads were then

combined with 0.05% SDS in PBS (1:1 v/v ratio) and, following

incubation at room temperature for 20 min, 5 mL of beads (1:20

dilution in the plate) were added to 95 mL of eQuIC reaction

buffer (10 mM PBS pH 7.4, 300 mM NaCl, 0.1 mg/mL rPrPsen,

100 mM ThT, and 10 mM EDTA) in a black 96-well plate with

a clear bottom (Nunc).The reaction was incubated in a BMG

Fluostar plate reader at 48uC using the same cycles of shake and

rest previously described for the RT-QuIC [41].

Western blotting analysis
PrPRes was detected by immunoblotting. In brief, 10% brain

homogenates were digested with 20 mg/mL of proteinase K for
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1 h at 37Cu. For synaptosome analyses, the fractions were pre-

treated with 0.4% Triton X100 (final concentration) and digested

with 100 mg/mL of PK with the same conditions as previous

described for brain homogenates. PK digestion was stopped with

Pefabloc (Roche) at a final concentration of 4 mM. The digested

samples were boiled in sample buffer (4 M urea, 4% SDS, 2% b-
mercaptoethanol, 8% glycerol, 0.02% bromophenol blue and

50 mM Tris-HCl; pH 6.8) and subjected to SDS-PAGE using

10% BisTris NuPAGE gels (Invitrogen). Proteins were transferred

to an Immobilon P membrane (Millipore) using iBlot Gel Transfer

System (Life Technologies).The membrane was probed with 6D11

antibody (Covance) at a 1:10,000 dilution, followed by secondary

AP-conjugated antibody goat anti-mouse (1:10,000 dilution)

(Jackson Immuno Research Laboratories). The bands were

visualized using the Attophos AP Fluorescent Substrate system

(Promega) according to the manufacturer’s recommendations.
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