29 research outputs found

    Global economic burden of unmet surgical need for appendicitis

    Get PDF
    Background: There is a substantial gap in provision of adequate surgical care in many low-and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods: Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results: Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion: For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Dissolution behavior of bioactive glass ceramics with different CaO/MgO ratios in SBF-K9 and r-SBF

    Get PDF
    In the present work, we studied dissolution behavior of three glass ceramics samples each having 34 SiO2–14.5 P2O5–1 CaF2–0.5 MgF2 (%wt) and ratio of CaO/MgO varying from 11.5:1 to 1:11.5 in conventional SBF (SBF-K9) and revised SBF (r-SBF) that has ionic concentration exactly equal to that of human blood plasma. For that purpose, samples were immersed in fluids for different time periods upto 25 days. Thin film XRD analysis revealed the diffusive nature of the phases on the surfaces of samples after soaking for different time periods in r-SBF. It showed the poor precipitation and small thickness of the HCAp layer on the samples as compared to that in SBF-K9, thus indicating the fitness and sensitivity of r-SBF for in-vitro characterization of samples. AAS, FTIR and EDS revealed slow bonding rate on the surfaces of the samples in r-SBF than that in SBF-K9 that showed the dependence of bond formation on the composition of the materials as well as on the physiological fluid used for in-vitro characterization. The rate of HCAp formation was slower in r-SBF due to more competitive adsorption of CO3− ions to Ca and Mg ions owing to greater amount of CO3− in r-SBF than that in SBF-K9. It shows the importance of CO3− content in the physiological fluids for the in-vitro assessment of samples. So, r-SBF is recommended to be used for assessment of samples to clearly understand their behavior in-vivo

    Effect of sintering time on crystallization, densification and in-vitro characteristics of bioactive glass ceramics

    No full text
    Abstract: In order to improve the chemical stability and modify the biodegradability of bio-glass ceramics materials for certain applications, a correlation between structural and biological properties of bio-glass ceramics is very essential and these properties are found to be greatly dependent on the composition and synthetic parameters of the material. In the present work, an attempt has been made to study the effect of sintering time on crystallization, densification and invitro properties of a new glass ceramics system. For that purpose, glass of the composition (% wt) (34SiO 2 -46CaO-14.5P 2 O 5 -4Na 2 O-1CaF 2 -.5MgF 2 ) was prepared by melting the thoroughly mixed powders of the ingredients in muffle furnace and then quenching the melt in water. Sintering was carried out at 1000 C, in accordance with the average of three exothermal peaks of differential thermal analysis (DTA), for three different time intervals 5h, 10h and 15 hours respectively. The main crystalline phases formed after controlled heat-treatment of the glass were hydroxyfluoroapatite (HFA), tricalcium phosphate (TCP) and wollastonite (W) respectively as conformed by the X-Ray diffraction (XRD). Scanning electron microscope, bulk density and diameter shrinkage co-efficient data illustrated that the rate of densification was higher for 5-10 hours sintering time interval than that for 10-15 hours. At 15 hours sintering time, decomposition of HFA into TCP and W was also observed. The samples were immersed in simulated body fluid (SBF) for 30 days at ambient temperature. Fourier transformation infrared spectroscopy (FTIR) and energy dispersive analysis by X-rays (EDX) revealed the presence of Hydroxycarbonate apatite (HCA) showing that the glass ceramics under investigation were bioactive and their bioactivity depends on the sintering time

    Room temperature p

    No full text

    Enhancing supercapacitor performance through design optimization of laser-induced graphene and MWCNT coatings for flexible and portable energy storage

    No full text
    Abstract The field of supercapacitors consistently focuses on research and challenges to improve energy efficiency, capacitance, flexibility, and stability. Low-cost laser-induced graphene (LIG) offers a promising alternative to commercially available graphene for next-generation wearable and portable devices, thanks to its remarkable specific surface area, excellent mechanical flexibility, and exceptional electrical properties. We report on the development of LIG-based flexible supercapacitors with optimized geometries, which demonstrate high capacitance and energy density while maintaining flexibility and stability. Three-dimensional porous graphene films were synthesized, and devices with optimized parameters were fabricated and tested. One type of device utilized LIG, while two other types were fabricated on LIG by coating multi-walled carbon nanotubes (MWCNT) at varying concentrations. Characterization techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy, and voltammetry, were employed to analyze the fabricated devices. AFM analysis revealed a surface roughness of 2.03 µm for LIG due to laser treatment. SEM images displayed compact, dense, and porous surface morphology. XRD analysis confirmed the presence of graphene and graphene oxide, which was further supported by energy-dispersive X-ray spectroscopy (EDX) data. Raman spectroscopy indicated that the fabricated samples exhibited distinct D and G bands at 1362 cm–1 and 1579 cm–1, respectively. Cyclic voltammetry (CV) results showed that LIG's capacitance, power density, and energy density were 6.09 mF cm–2, 0.199 mW cm–2, and 3.38 µWh cm–2, respectively, at a current density of 0.2 mA cm–2. The LIG-MWCNT coated electrode exhibited a higher energy density of 6.05 µWh cm–2 and an areal-specific capacitance of 51.975 mF cm–2 compared to the LIG-based devices. The fabricated device has potential applications in smart electronics, nanorobotics, microelectromechanical systems (MEMS), and wearable and portable electronics

    Defects mediated weak ferromagnetism in Zn1−y C y O (0.00 ≤ y ≤ 0.10) nanorods semiconductors for spintronics applications

    No full text
    Abstract A series of carbon-doped ZnO [Zn1−yCyO (0.00 ≤ y ≤ 0.10)] nanorods were synthesized using a cost-effective low-temperature (85 °C) dip coating technique. X-ray diffractometer scans of the samples revealed the hexagonal structure of the C-doped ZnO samples, except for y = 0.10. XRD analysis confirmed a decrease in the unit cell volume after doping C into the ZnO matrix, likely due to the incorporation of carbon at oxygen sites (CO defects) resulting from ionic size differences. The morphological analysis confirmed the presence of hexagonal-shaped nanorods. X-ray photoelectron spectroscopy identified C–Zn–C bonding, i.e., CO defects, Zn–O–C bond formation, O–C–O bonding, oxygen vacancies, and sp2-bonded carbon in the C-doped ZnO structure with different compositions. We analyzed the deconvoluted PL visible broadband emission through fitted Gaussian peaks to estimate various defects for electron transition within the bandgap. Raman spectroscopy confirmed the vibrational modes of each constituent. We observed a stronger room-temperature ferromagnetic nature in the y = 0.02 composition with a magnetization of 0.0018 emu/cc, corresponding to the highest CO defects concentration and the lowest measured bandgap (3.00 eV) compared to other samples. Partial density of states analysis demonstrated that magnetism from carbon is dominant due to its p-orbitals. We anticipate that if carbon substitutes oxygen sites in the ZnO structure, the C-2p orbitals become localized and create two holes at each site, leading to enhanced p–p type interactions and strong spin interactions between carbon atoms and carriers. This phenomenon can stabilize the long-range order of room-temperature ferromagnetism properties for spintronic applications
    corecore