1,209 research outputs found

    INFORME DE EXPERIENCIA EMPRESARIAL: LA RED DE CONSUMO COMO FACTOR DE CRECIMIENTO (INCREMENTO DE COBERTURA Y ROTACION) PARA UNA MARCA PERUANA DE PRODUCTOS NUTRICIONALES

    Get PDF
    SOBRE LA PROPUESTA DE PRODUCTOS SOBRE MI INCURSIÓN EN EL NEGOCIO SOBRE LOS PARADIGMAS ACERCA DE LAS REDES DE MERCADEO COMO OPORTUNIDAD DE NEGOCIO SOBRE LA VENTAJA DE UN INGENIERO INDUSTRIAL COMO EMPRESARIO DE REDES Y PROPUESTAS DE MEJORA EN LA OPERATIVIDAD SOBRE EL MODELO DE NEGOCIO ANEXO

    Detection of poxtA-and optrA-carrying E. faecium isolates in air samples of a Spanish swine farm

    Get PDF
    Objective: Two linezolid-resistant Enterococcus faecium isolates, C10004 and C10009, were recovered from air samples of a Spanish swine farm and comprehensively characterized. Methods: Detection of linezolid resistance mechanisms (mutations and acquisition of resistance genes) was performed by PCR/sequencing. Isolates were characterized by multilocus sequence typing (MLST), antimicrobial susceptibility testing, detection of antimicrobial resistance and virulence genes, and analysis of the genetic environment of the linezolid resistance genes. The characterization of isolate C10009 was performed by Whole-Genome-Sequencing and of isolate C10004 by PCR and amplicon sequencing, where applicable. Conjugation experiments to assess the transferability of the optrA and poxtA genes implicated in linezolid resistance were performed. Results: The linezolid-resistant E. faecium isolates C10004 and C10009, assigned to ST128 and ST437, respectively, harbored the optrA and poxtA genes. Neither mutations in the 23S rRNA nor in the genes for the ribosomal proteins L3, L4 and L22 were detected. C10004 and C10009 carried fourteen and thirteen antimicrobial resistance genes, respectively. The sequence alignment indicated that the genetic environment of the poxtA gene was identical in both isolates, with a downstream-located fexB gene. The poxtA gene was transferred by conjugation together with the fexB gene, and also with tet(M) and tet(L) in the case of isolate C10004. The optrA gene could not be transferred. Conclusions: This is the first report of the poxtA gene in Spain. The presence of poxtA- and optrA-carrying E. faecium isolates in air samples represents a public health concern, indicating an involvement of swine farms in the spread of linezolid-resistant bacteria

    Multimodality Imaging of Chronic Ischemia

    Get PDF
    Although ischemic cardiomyopathy is commonly caused by chronic obstructive coronary disease, the mechanism of the cause is still under investigation. We present echocardiographic strain, magnetic resonance, and histology findings in a chronic ischemia model in preclinical study. This case illustrates the features of multimodality imaging in chronic obstructive coronary disease and gives us great insight into understanding the mechanism of ischemic cardiomyopathy

    ortho-Lithiation Reactions of O-(3,n-Dihalophenyl) N,N-Diethylcarbamates: Synthesis of Dihalosalicylamides and 2,3,n-Trihalophenol Derivatives

    Get PDF
    New dihalosalicylamides and trihalophenol derivatives have been synthesized from easily available O-(3,n-dihalophenyl) N,N-diethylcarbamates by using a directed ortho-metalation (DoM) strategy. The o-lithiation reactions with sBuLi take place regioselectively at the doubly activated C-2 position, which demonstrates the ability of O-carbamates as directed metalating groups. In addition, highly functionalized arylnitriles were accessed from organolithium intermediates by using a tandem transnitrilation/SNAr reaction sequence.Junta de Castilla y León (Consejería de Educación) and FEDER (BU237U13 and BU076U16) as well as the Ministerio de Economía y Competitividad (MINECO) and FEDER (CTQ2013-48937-C2-1-P

    Comparative tree growth, phenology and fruit yield of several Japanese plum cultivars in two newly established orchards, organic and conventionally managed

    Full text link
    The growth, phenology and fruit yield of 14 Japanese plum cultivars (Prunus salicina Lindl) were studied in two newly established experimental orchards under organic and conventional management. The experiment was conducted during 2005-2011 in the province of Seville (SW Spain), an important region of Japanese plum culture. Trunk cross-section areas (TCSA), flowering, yield and tree defoliation before winter dormancy were analysed over several years. After one year, TCSA were larger in the organically managed orchard (OMO) for most of the cultivars, in the next two years they were equal, and from the fourth year, several cultivars showed significantly larger TCSA in the conventionally managed orchard (CMO). Flowering in the conventional orchard started from 2 to 6 days before and lasted for 3 to 5 days more than in the OMO. Several cultivars produced significantly more fruit in the CMO, being the average fruit yield in the organic orchard about 72% of the conventionally managed orchard. Autumn defoliation was significantly advanced in the organic orchard, especially in cultivars highly susceptible to rust (Tranzschelia pruni spinosae), a disease not adequately controlled in the organic orchard

    SwissGenVar: A Platform for Clinical-Grade Interpretation of Genetic Variants to Foster Personalized Healthcare in Switzerland.

    Get PDF
    Large-scale next-generation sequencing (NGS) germline testing is technically feasible today, but variant interpretation represents a major bottleneck in analysis workflows. This includes extensive variant prioritization, annotation, and time-consuming evidence curation. The scale of the interpretation problem is massive, and variants of uncertain significance (VUSs) are a challenge to personalized medicine. This challenge is further compounded by the complexity and heterogeneity of the standards used to describe genetic variants and the associated phenotypes when searching for relevant information to support clinical decision making. To address this, all five Swiss academic institutions for Medical Genetics joined forces with the Swiss Institute of Bioinformatics (SIB) to create SwissGenVar as a user-friendly nationwide repository and sharing platform for genetic variant data generated during routine diagnostic procedures and research sequencing projects. Its aim is to provide a protected environment for expert evidence sharing about individual variants to harmonize and upscale their significance interpretation at the clinical grade according to international standards. To corroborate the clinical assessment, the variant-related data will be combined with consented high-quality clinical information. Broader visibility will be achieved by interfacing with international databases, thus supporting global initiatives in personalized healthcare

    SwissGenVar: A platform for clinical grade interpretation of genetic variants to foster personalized health care in Switzerland

    Full text link
    Large-scale next-generation sequencing (NGS) germline testing is technically feasible today, but variant interpretation represents a major bottleneck in analysis workflows including the extensive variant prioritization, annotation, and time-consuming evidence curation. The scale of the interpretation problem is massive, and variants of uncertain significance (VUS) are a challenge to personalized medicine. This challenge is further compounded by the complexity and heterogeneity of standards used to describe genetic variants and associated phenotypes when searching for relevant information to inform clinical decision-making. For this purpose, all five Swiss academic Medical Genetics Institutions joined forces with the Swiss Institute of Bioinformatics (SIB) to create SwissGenVar as a user-friendly nationwide repository and sharing platform for genetic variant data generated during routine diagnostic procedures and research sequencing projects. Its objective is to provide a protected environment for expert evidence sharing about individual variants to harmonize and up-scale their significance interpretation at clinical grade following international standards. To corroborate the clinical assessment, the variant-related data are combined with consented high-quality clinical information. Broader visibility will be gained by interfacing with international databases, thus supporting global initiatives in personalized health care

    SwissGenVar: A Platform for Clinical-Grade Interpretation of Genetic Variants to Foster Personalized Healthcare in Switzerland

    Get PDF
    Large-scale next-generation sequencing (NGS) germline testing is technically feasible today, but variant interpretation represents a major bottleneck in analysis workflows. This includes extensive variant prioritization, annotation, and time-consuming evidence curation. The scale of the interpretation problem is massive, and variants of uncertain significance (VUSs) are a challenge to personalized medicine. This challenge is further compounded by the complexity and heterogeneity of the standards used to describe genetic variants and the associated phenotypes when searching for relevant information to support clinical decision making. To address this, all five Swiss academic institutions for Medical Genetics joined forces with the Swiss Institute of Bioinformatics (SIB) to create SwissGenVar as a user-friendly nationwide repository and sharing platform for genetic variant data generated during routine diagnostic procedures and research sequencing projects. Its aim is to provide a protected environment for expert evidence sharing about individual variants to harmonize and upscale their significance interpretation at the clinical grade according to international standards. To corroborate the clinical assessment, the variant-related data will be combined with consented high-quality clinical information. Broader visibility will be achieved by interfacing with international databases, thus supporting global initiatives in personalized healthcare

    Tumor immune infiltration estimated from gene expression profiles predicts colorectal cancer relapse

    Full text link
    A substantial fraction of patients with stage I-III colorectal adenocarcinoma (CRC) experience disease relapse after surgery with curative intent. However, biomarkers for predicting the likelihood of CRC relapse have not been fully explored. Therefore, we assessed the association between tumor infiltration by a broad array of innate and adaptive immune cell types and CRC relapse risk. We implemented a discovery-validation design including a discovery dataset from Moffitt Cancer Center (MCC; Tampa, FL) and three independent validation datasets: (1) GSE41258 (2) the Molecular Epidemiology of Colorectal Cancer (MECC) study, and (3) GSE39582. Infiltration by 22 immune cell types was inferred from tumor gene expression data, and the association between immune infiltration by each cell type and relapse-free survival was assessed using Cox proportional hazards regression. Within each of the four independent cohorts, CD4+ memory activated T cell (HR: 0.93, 95% CI: 0.90-0.96; FDR = 0.0001) infiltration was associated with longer time to disease relapse, independent of stage, microsatellite instability, and adjuvant therapy. Based on our meta-analysis across the four datasets, 10 innate and adaptive immune cell types associated with disease relapse of which 2 were internally validated using multiplex immunofluorescence. Moreover, immune cell type infiltration was a better predictors of disease relapse than Consensus Molecular Subtype (CMS) and other expression-based biomarkers (Immune-AICMCC:238.1-238.9; CMS-AICMCC: 241.0). These data suggest that transcriptome-derived immune profiles are prognostic indicators of CRC relapse and quantification of both innate and adaptive immune cell types may serve as candidate biomarkers for predicting prognosis and guiding frequency and modality of disease surveillance

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag
    corecore