5 research outputs found

    Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome

    Get PDF
    In this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17–74 kb in 9% of the patients. Haploinsufficiency of the SHANK3 gene, confirmed in all rearrangements, is very likely the cause of the major neurological features associated with PMS. SHANK3 mutations can also result in language and/or social interaction disabilities. We determined the breakpoint junctions in 29 cases, providing a realistic snapshot of the variety of mechanisms driving non-recurrent deletion and repair at chromosome ends. De novo telomere synthesis and telomere capture are used to repair terminal deletions; non-homologous end-joining or microhomology-mediated break-induced replication is probably involved in ring 22 formation and translocations; non-homologous end-joining and fork stalling and template switching prevail in cases with interstitial 22q13.3. For the first time, we also demonstrated that distinct stabilizing events of the same terminal deletion can occur in different early embryonic cells, proving that terminal deletions can be repaired by multistep healing events and supporting the recent hypothesis that rare pathogenic germline rearrangements may have mitotic origin. Finally, the progressive clinical deterioration observed throughout the longitudinal medical history of three subjects over forty years supports the hypothesis of a role for SHANK3 haploinsufficiency in neurological deterioration, in addition to its involvement in the neurobehavioral phenotype of PMS

    Complex Segmental Duplications Mediate a Recurrent dup(X)(p11.22-p11.23) Associated with Mental Retardation, Speech Delay, and EEG Anomalies in Males and Females

    Get PDF
    Submicroscopic copy-number variations make a considerable contribution to the genetic etiology of human disease. We have analyzed subjects with idiopathic mental retardation (MR) by using whole-genome oligonucleotide-based array comparative genomic hybridization (aCGH) and identified familial and de novo recurrent Xp11.22-p11.23 duplications in males and females with MR, speech delay, and a peculiar electroencephalographic (EEG) pattern in childhood. The size of the duplications ranges from 0.8–9.2 Mb. Most affected females show preferential activation of the duplicated X chromosome. Carriers of the smallest duplication show X-linked recessive inheritance. All other affected individuals present dominant expression and comparable clinical phenotypes irrespective of sex, duplication size, and X-inactivation pattern. The majority of the rearrangements are mediated by recombination between flanking complex segmental duplications. The identification of common clinical features, including the typical EEG pattern, predisposing genomic structure, and peculiar X-inactivation pattern, suggests that duplication of Xp11.22-p11.23 constitutes a previously undescribed syndrome

    The 2q23.1 microdeletion syndrome: clinical and behavioural phenotype

    No full text
    Six submicroscopic deletions comprising chromosome band 2q23.1 in patients with severe mental retardation (MR), short stature, microcephaly and epilepsy have been reported, suggesting that haploinsufficiency of one or more genes in the 2q23.1 region might be responsible for the common phenotypic features in these patients. In this study, we report the molecular and clinical characterisation of nine new 2q23.1 deletion patients and a clinical update on two previously reported patients. All patients were mentally retarded with pronounced speech delay and additional abnormalities including short stature, seizures, microcephaly and coarse facies. The majority of cases presented with stereotypic repetitive behaviour, a disturbed sleep pattern and a broad-based gait. These features led to the initial clinical impression of Angelman, Rett or Smith–Magenis syndromes in several patients. The overlapping 2q23.1 deletion region in all 15 patients comprises only one gene, namely, MBD5. Interestingly, MBD5 is a member of the methyl CpG-binding domain protein family, which also comprises MECP2, mutated in Rett's syndrome. Another gene in the 2q23.1 region, EPC2, was deleted in 12 patients who had a broader phenotype than those with a deletion of MBD5 only. EPC2 is a member of the polycomb protein family, involved in heterochromatin formation and might be involved in causing MR. Patients with a 2q23.1 microdeletion present with a variable phenotype and the diagnosis should be considered in mentally retarded children with coarse facies, seizures, disturbed sleeping patterns and additional specific behavioural problems

    Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes

    Get PDF
    BackgroundDuplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients.MethodsWe tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons.ResultsWe identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P=1.1Ă—10?7). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in nine children with mental retardation or autism spectrum disorder and other variable features (P=0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies
    corecore