23 research outputs found
Dioxin Toxicity In Vivo Results from an Increase in the Dioxin-Independent Transcriptional Activity of the Aryl Hydrocarbon Receptor
The Aryl hydrocarbon receptor (Ahr) is the nuclear receptor mediating the toxicity of dioxins -widespread and persistent pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its dimerisation partner Ahr nuclear translocator (Arnt) and entails an increased transcriptional potency of Ahr, in addition to the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively) of a single function
Towards a System Level Understanding of Non-Model Organisms Sampled from the Environment: A Network Biology Approach
The acquisition and analysis of datasets including multi-level omics and physiology from non-model species, sampled from field populations, is a formidable challenge, which so far has prevented the application of systems biology approaches. If successful, these could contribute enormously to improving our understanding of how populations of living organisms adapt to environmental stressors relating to, for example, pollution and climate. Here we describe the first application of a network inference approach integrating transcriptional, metabolic and phenotypic information representative of wild populations of the European flounder fish, sampled at seven estuarine locations in northern Europe with different degrees and profiles of chemical contaminants. We identified network modules, whose activity was predictive of environmental exposure and represented a link between molecular and morphometric indices. These sub-networks represented both known and candidate novel adverse outcome pathways representative of several aspects of human liver pathophysiology such as liver hyperplasia, fibrosis, and hepatocellular carcinoma. At the molecular level these pathways were linked to TNF alpha, TGF beta, PDGF, AGT and VEGF signalling. More generally, this pioneering study has important implications as it can be applied to model molecular mechanisms of compensatory adaptation to a wide range of scenarios in wild populations
Cytoplasmic Accumulation and Aggregation of TDP-43 upon Proteasome Inhibition in Cultured Neurons
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are characterized by intraneuronal deposition of the nuclear TAR DNA-binding protein 43 (TDP-43) caused by unknown mechanisms. Here, we studied TDP-43 in primary neurons under different stress conditions and found that only proteasome inhibition by MG-132 or lactacystin could induce significant cytoplasmic accumulation of TDP-43, a histopathological hallmark in disease. This cytoplasmic accumulation was accompanied by phosphorylation, ubiquitination and aggregation of TDP-43, recapitulating major features of disease. Proteasome inhibition produced similar effects in both hippocampal and cortical neurons, as well as in immortalized motor neurons. To determine the contribution of TDP-43 to cell death, we reduced TDP-43 expression using small interfering RNA (siRNA), and found that reduced levels of TDP-43 dose-dependently rendered neurons more vulnerable to MG-132. Taken together, our data suggests a role for the proteasome in subcellular localization of TDP-43, and possibly in disease
The desmosome and pemphigus
Desmosomes are patch-like intercellular adhering junctions (“maculae adherentes”), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca2+-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required
Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression in vivo
Alterations in tissue-specific gene expression greatly affect cell function. Transcription factors (TFs) interact with cis-acting binding sites in noncoding enhancer promoter regions. Transposable elements (TEs) are abundant and similarly represented among mammalian genomes. TEs are important in gene regulation, but their function is not well understood. We have characterized a TE containing functional TF-binding sites for the carcinogen-activated dioxin receptor xenobiotic responsive element (XRE) and the epithelial–mesenchymal transition regulator Slug (Slug site). A Mus promoter database was scanned for XREs to predict coregulation with other TFs. We identified an overrepresented (1,398 genes) B1 retrotransposon containing XRE and Slug sites within 35 bp of each other (designated as B1-X35S). This B1-X35S retrotransposon differed from classic B1s by the presence of the Slug site and by its differential nucleotide conservation outside the X35S region. Phylogenetically, B1-X35S appeared recently in evolution, close to the B1-B subfamily. Comparative gene expression in 61 mouse tissues revealed that B1-X35S-containing genes had lower median expression levels than those with canonical B1 TEs, suggesting a repressive role for X35S. Indeed, X35S was functional and able to bind aryl hydrocarbon (dioxin) receptor (AhR) and Slug and, importantly, to repress cis-reporter genes. Moreover, AhR and Slug were recruited to X35S in vivo and repressed the endogenous expression of X35S-containing genes. Our results demonstrate the existence of a widely present B1 subfamily in the mouse. Because AhR and Slug are relevant in tumor development and differentiation, X35S may represent a genome-wide regulatory mechanism and a tool to modulate gene expression
Aryl hydrocarbon receptor activation by cAMP vs. dioxin: Divergent signaling pathways
Even before the first vertebrates appeared on our planet, the aryl hydrocarbon receptor (AHR) gene was present to carry out one or more critical life functions. The vertebrate AHR then evolved to take on functions of detecting and responding to certain classes of environmental toxicants. These environmental pollutants include polycyclic aromatic hydrocarbons (e.g., benzo[a]pyrene), polyhalogenated hydrocarbons, dibenzofurans, and the most potent small-molecular-weight toxicant known, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin). After binding of these ligands, the activated AHR translocates rapidly from the cytosol to the nucleus, where it forms a heterodimer with aryl hydrocarbon nuclear translocator, causing cellular responses that lead to toxicity, carcinogenesis, and teratogenesis. The nuclear form of the activated AHR/aryl hydrocarbon nuclear translocator complex is responsible for alterations in immune, endocrine, reproductive, developmental, cardiovascular, and central nervous system functions whose mechanisms remain poorly understood. Here, we show that the second messenger, cAMP (an endogenous mediator of hormones, neurotransmitters, and prostaglandins), activates the AHR, moving the receptor to the nucleus in some ways that are similar to and in other ways fundamentally different from AHR activation by dioxin. We suggest that this cAMP-mediated activation may reflect the true endogenous function of AHR; disruption of the cAMP-mediated activation by dioxin, binding chronically to the AHR for days, weeks, or months, might be pivotal in the mechanism of dioxin toxicity. Understanding this endogenous activation of the AHR by cAMP may help in developing methods to counteract the toxicity caused by numerous environmental and food-borne toxic chemicals that act via the AHR
Pitx2 regulates gonad morphogenesis
Organ shape and size, and, ultimately, organ function, relate in part to the cell and tissue spatial arrangement that takes place during embryonic development. Despite great advances in the genetic regulatory networks responsible for tissue and organ development, it is not yet clearly understood how specific gene functions are linked to the specific morphogenetic processes underlying the internal organ asymmetries found in vertebrate animals. During female chick embryogenesis, and in contrast to males where both testes develop symmetrically, asymmetrical gonad morphogenesis results in only one functional ovary. The disposition of paired organs along the left–right body axis has been shown to be regulated by the activity of the homeobox containing gene pitx2. We have found that pitx2 regulates cell adhesion, affinity, and cell recognition events in the developing gonad primordium epithelia. This in turn not only allows for proper somatic development of the gonad cortex but also permits the proliferation and differentiation of primordial germ cells. We illustrate how Pitx2 activity directs asymmetrical gonad morphogenesis by controlling mitotic spindle orientation of the developing gonad cortex and how, by modulating cyclinD1 expression during asymmetric ovarian development, Pitx2 appears to control gonad organ size. All together our observations indicate that the effects elicited by Pitx2 during the development of the female chick ovary are critical for cell topology, growth, fate, and ultimately organ morphogenesis and function
ADAM10 is upregulated in melanoma metastasis compared with primary melanoma
ADAM10 (a disintegrin and metalloproteinase 10) is involved in the ectodomain shedding of various substrates, including adhesion molecules such as L1 cell adhesion molecule (L1-CAM) and CD44, which are known to have important roles in the development of malignant melanoma. In our study, we characterized the expression of ADAM10 in melanoma cells in vitro and in vivo. Immunohistochemical analysis on tissue microarrays indicated that ADAM10 expression was significantly elevated in melanoma metastasis compared with primary melanomas. In vitro downregulation of ADAM10 with specific small interfering RNA (siRNA) resulted in a suppression of the anchorage-independent cell growth and reduced the migration of melanoma cells. In addition, overexpression of ADAM10 induced the migration of melanoma cells. In cell lines from melanoma patients with metastasis, ADAM10 was significantly overexpressed, and ADAM10 expression correlated with increased cell proliferation. Furthermore, we present evidence that ADAM10 is involved in the release of L1-CAM from melanoma cells. It is important that knockdown of cellular L1-CAM reduced the migration of melanoma cells and abrogated the chemoresistance against cisplatin. In contrast, soluble L1-CAM had no effect on melanoma cell migration or cell survival. Taken together, our data demonstrate that ADAM10 and L1-CAM have important roles during melanoma progression and both molecules represent attractive targets for therapeutical intervention of melanomas.Journal of Investigative Dermatology advance online publication, 29 October 2009; doi:10.1038/jid.2009.335