31 research outputs found

    Genome-wide reconstruction of rediploidization following autopolyploidization across one hundred million years of salmonid evolution

    Get PDF
    Acknowledgements: This work was supported by the Biotechnology and Biological Sciences Research Council grant BBS/E/D/10002070 and the Frimedbio program of the Research Council of Norway (grant number 241016). MKG received studentship funding from a University of Aberdeen Elphinstone scholarship with additional support from the Government of Karnataka. We thank Dr Sebastian Beggel, Dr Bernhard C. Stoeckle, Jens-Eike Täuber and Ms Haiyu Ding at the Aquatic Systems Biology Unit, Technical University of Munich for their support in sampling huchen. We thank Dr Torfinn Nome for supporting bioinformatic analyses. We thank Madhusudhan Gundappa (Twitter: @fish_lines) for providing species illustrations in Figure 1. We also thanks Dr Gareth Gillard (Norwegian University of Life Sciences) for support with the RNA-Seq data. The Earlham Institute performed library preparation and sequencing used in the huchen genome assembly.Peer reviewedPublisher PD

    The Chromosome-Level Genome Assembly of European Grayling Reveals Aspects of a Unique Genome Evolution Process Within Salmonids

    Get PDF
    Salmonids represent an intriguing taxonomical group for investigating genome evolution in vertebrates due to their relatively recent last common whole genome duplication event, which occurred between 80 and 100 million years ago. Here, we report on the chromosome-level genome assembly of European grayling (Thymallus thymallus), which represents one of the earliest diverged salmonid subfamilies. To achieve this, we first generated relatively long genomic scaffolds by using a previously published draft genome assembly along with long-read sequencing data and a linkage map. We then merged those scaffolds by applying synteny evidence from the Atlantic salmon (Salmo salar) genome. Comparisons of the European grayling genome assembly to the genomes of Atlantic salmon and Northern pike (Esox lucius), the latter used as a nonduplicated outgroup, detailed aspects of the characteristic chromosome evolution process that has taken place in European grayling. While Atlantic salmon and other salmonid genomes are portrayed by the typical occurrence of numerous chromosomal fusions, European grayling chromosomes were confirmed to be fusion-free and were characterized by a relatively large proportion of paracentric and pericentric inversions. We further reported on transposable elements specific to either the European grayling or Atlantic salmon genome, on the male-specific sdY gene in the European grayling chromosome 11A, and on regions under residual tetrasomy in the homeologous European grayling chromosome pairs 9A-9B and 25A-25B. The same chromosome pairs have been observed under residual tetrasomy in Atlantic salmon and in other salmonids, suggesting that this feature has been conserved since the subfamily split.Peer reviewe

    The structural variation landscape in 492 Atlantic salmon genomes

    Get PDF
    Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution. These SVs recover population genetic structure with high resolution, include an active DNA transposon, widely affect functional features, and overlap more duplicated genes retained from an ancestral salmonid autotetraploidization event than expected. Changes in SV allele frequency between wild and farmed fish indicate polygenic selection on behavioural traits during domestication, targeting brain-expressed synaptic networks linked to neurological disorders in humans. This study offers novel insights into the role of SVs in genome evolution and the genetic architecture of domestication traits, along with resources supporting reliable SV discovery in non-model species.Peer reviewe

    The Atlantic salmon genome provides insights into rediploidization

    Get PDF
    The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.publishedVersio

    Tracking the evolution of a cold stress associated gene family in cold tolerant grasses

    No full text
    Abstract Background Grasses are adapted to a wide range of climatic conditions. Species of the subfamily Pooideae, which includes wheat, barley and important forage grasses, have evolved extreme frost tolerance. A class of ice binding proteins that inhibit ice re-crystallisation, specific to the Pooideae subfamily lineage, have been identified in perennial ryegrass and wheat, and these proteins are thought to have evolved from a leucine-rich repeat phytosulfokine receptor kinase (LRR-PSR)-like ancestor gene. Even though the ice re-crystallisation inhibition function of these proteins has been studied extensively in vitro, little is known about the evolution of these genes on the molecular level. Results We identified 15 putative novel ice re-crystallisation inhibition (IRI)-like protein coding genes in perennial ryegrass, barley, and wheat. Using synonymous divergence estimates we reconstructed the evolution of the IRI-like gene family. We also explored the hypothesis that the IRI-domain has evolved through repeated motif expansion and investigated the evolutionary relationship between a LRR-domain containing IRI coding gene in carrot and the Pooideae IRI-like genes. Our analysis showed that the main expansion of the IRI-gene family happened ~36 million years ago (Mya). In addition to IRI-like paralogs, wheat contained several sequences that likely were products of polyploidisation events (homoeologs). Through sequence analysis we identified two short motifs in the rice LRR-PSR gene highly similar to the repeat motifs of the IRI-domain in cold tolerant grasses. Finally we show that the LRR-domain of carrot and grass IRI proteins both share homology to an Arabidopsis thaliana LRR-trans membrane protein kinase (LRR-TPK). Conclusion The diverse IRI-like genes identified in this study tell a tale of a complex evolutionary history including birth of an ice binding domain, a burst of gene duplication events after cold tolerant grasses radiated from rice, protein domain structure differentiation between paralogs, and sub- and/or neofunctionalisation of IRI-like proteins. From our sequence analysis we provide evidence for IRI-domain evolution probably occurring through increased copy number of a repeated motif. Finally, we discuss the possibility of parallel evolution of LRR domain containing IRI proteins in carrot and grasses through two completely different molecular adaptations.</p

    Extracting functional trends from whole genome duplication events using comparative genomics

    Get PDF
    Background: The number of species with completed genomes, including those with evidence for recent whole genome duplication events has exploded. The recently sequenced Atlantic salmon genome has been through two rounds of whole genome duplication since the divergence of teleost fish from the lineage that led to amniotes. This quadrupoling of the number of potential genes has led to complex patterns of retention and loss among gene families. Results: Methods have been developed to characterize the interplay of duplicate gene retention processes across both whole genome duplication events and additional smaller scale duplication events. Further, gene expression divergence data has become available as well for Atlantic salmon and the closely related, pre-whole genome duplication pike and methods to describe expression divergence are also presented. These methods for the characterization of duplicate gene retention and gene expression divergence that have been applied to salmon are described. Conclusions: With the growth in available genomic and functional data, the opportunities to extract functional inference from large scale duplicates using comparative methods have expanded dramatically. Recently developed methods that further this inference for duplicated genes have been described
    corecore