1,889 research outputs found

    AMiBA: scaling relations between the integrated Compton-y and X-ray derived temperature, mass, and luminosity

    Full text link
    We investigate the scaling relations between the X-ray and the thermal Sunyaev-Zel'dovich Effect (SZE) properties of clusters of galaxies, using data taken during 2007 by the Y.T. Lee Array for Microwave Background Anisotropy (AMiBA) at 94 GHz for the six clusters A1689, A1995, A2142, A2163, A2261, and A2390. The scaling relations relate the integrated Compton-y parameter Y_{2500} to the X-ray derived gas temperature T_{e}, total mass M_{2500}, and bolometric luminosity L_X within r_{2500}. Our results for the power-law index and normalization are both consistent with the self-similar model and other studies in the literature except for the Y_{2500}-L_X relation, for which a physical explanation is given though further investigation may be still needed. Our results not only provide confidence for the AMiBA project but also support our understanding of galaxy clusters.Comment: Accepted by ApJ; 8 pages, 3 figures, 5 table

    Constraining Intra-cluster Gas Models with AMiBA13

    Get PDF
    Clusters of galaxies have been used extensively to determine cosmological parameters. A major difficulty in making best use of Sunyaev-Zel'dovich (SZ) and X-ray observations of clusters for cosmology is that using X-ray observations it is difficult to measure the temperature distribution and therefore determine the density distribution in individual clusters of galaxies out to the virial radius. Observations with the new generation of SZ instruments are a promising alternative approach. We use clusters of galaxies drawn from high-resolution adaptive mesh refinement (AMR) cosmological simulations to study how well we should be able to constrain the large-scale distribution of the intra-cluster gas (ICG) in individual massive relaxed clusters using AMiBA in its configuration with 13 1.2-m diameter dishes (AMiBA13) along with X-ray observations. We show that non-isothermal beta models provide a good description of the ICG in our simulated relaxed clusters. We use simulated X-ray observations to estimate the quality of constraints on the distribution of gas density, and simulated SZ visibilities (AMiBA13 observations) for constraints on the large-scale temperature distribution of the ICG. We find that AMiBA13 visibilities should constrain the scale radius of the temperature distribution to about 50% accuracy. We conclude that the upgraded AMiBA, AMiBA13, should be a powerful instrument to constrain the large-scale distribution of the ICG.Comment: Accepted for publication in The Astrophysical Journal, 12 pages, 9 figure

    AMiBA: Broadband Heterodyne CMB Interferometry

    Get PDF
    The Y. T. Lee Array for Microwave Background (AMiBA) has reported the first science results on the detection of galaxy clusters via the Sunyaev Zel'dovich effect. The science objectives required small reflectors in order to sample large scale structures (20') while interferometry provided modest resolutions (2'). With these constraints, we designed for the best sensitivity by utilizing the maximum possible continuum bandwidth matched to the atmospheric window at 86-102GHz, with dual polarizations. A novel wide-band analog correlator was designed that is easily expandable for more interferometer elements. MMIC technology was used throughout as much as possible in order to miniaturize the components and to enhance mass production. These designs will find application in other upcoming astronomy projects. AMiBA is now in operations since 2006, and we are in the process to expand the array from 7 to 13 elements.Comment: 10 pages, 6 figures, ApJ in press; a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/mtc_highreso.pd

    The genomic basis of mood instability:identification of 46 loci in 363,705 UK Biobank participants, genetic correlation with psychiatric disorders, and association with gene expression and function

    Get PDF
    Genome-wide association studies (GWAS) of psychiatric phenotypes have tended to focus on categorical diagnoses, but to understand the biology of mental illness it may be more useful to study traits which cut across traditional boundaries. Here, we report the results of a GWAS of mood instability as a trait in a large population cohort (UK Biobank, n = 363,705). We also assess the clinical and biological relevance of the findings, including whether genetic associations show enrichment for nervous system pathways. Forty six unique loci associated with mood instability were identified with a SNP heritability estimate of 9%. Linkage Disequilibrium Score Regression (LDSR) analyses identified genetic correlations with Major Depressive Disorder (MDD), Bipolar Disorder (BD), Schizophrenia, anxiety, and Post Traumatic Stress Disorder (PTSD). Gene-level and gene set analyses identified 244 significant genes and 6 enriched gene sets. Tissue expression analysis of the SNP-level data found enrichment in multiple brain regions, and eQTL analyses highlighted an inversion on chromosome 17 plus two brain-specific eQTLs. In addition, we used a Phenotype Linkage Network (PLN) analysis and community analysis to assess for enrichment of nervous system gene sets using mouse orthologue databases. The PLN analysis found enrichment in nervous system PLNs for a community containing serotonin and melatonin receptors. In summary, this work has identified novel loci, tissues and gene sets contributing to mood instability. These findings may be relevant for the identification of novel trans-diagnostic drug targets and could help to inform future stratified medicine innovations in mental health

    Mass and Hot Baryons in Massive Galaxy Clusters from Subaru Weak Lensing and AMiBA SZE Observations

    Full text link
    We present a multiwavelength analysis of a sample of four hot (T_X>8keV) X-ray galaxy clusters (A1689, A2261, A2142, and A2390) using joint AMiBA Sunyaev-Zel'dovich effect (SZE) and Subaru weak lensing observations, combined with published X-ray temperatures, to examine the distribution of mass and the intracluster medium (ICM) in massive cluster environments. Our observations show that A2261 is very similar to A1689 in terms of lensing properties. Many tangential arcs are visible around A2261, with an effective Einstein radius \sim 40 arcsec (at z \sim 1.5), which when combined with our weak lensing measurements implies a mass profile well fitted by an NFW model with a high concentration c_{vir} \sim 10, similar to A1689 and to other massive clusters. The cluster A2142 shows complex mass substructure, and displays a shallower profile (c_{vir} \sim 5), consistent with detailed X-ray observations which imply recent interaction. The AMiBA map of A2142 exhibits an SZE feature associated with mass substructure lying ahead of the sharp north-west edge of the X-ray core suggesting a pressure increase in the ICM. For A2390 we obtain highly elliptical mass and ICM distributions at all radii, consistent with other X-ray and strong lensing work. Our cluster gas fraction measurements, free from the hydrostatic equilibrium assumption, are overall in good agreement with published X-ray and SZE observations, with the sample-averaged gas fraction of = 0.133 \pm 0.027, for our sample = (1.2 \pm 0.1) \times 10^{15} M_{sun} h^{-1}. When compared to the cosmic baryon fraction f_b = \Omega_b/\Omega_m constrained by the WMAP 5-year data, this indicates /f_b = 0.78 \pm 0.16, i.e., (22 \pm 16)% of the baryons are missing from the hot phase of clusters.Comment: accepted for publication in ApJ; high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/ms_highreso.pd

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy

    Full text link
    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the first interferometer dedicated to studying the cosmic microwave background (CMB) radiation at 3mm wavelength. The choice of 3mm was made to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod platform was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific operations began with the detection of a number of clusters of galaxies via the thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing data in order to study the structure of dark matter. We also compare our data with X-ray data in order to derive the Hubble constant.Comment: accepted for publication in ApJ (13 pages, 7 figures); a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/pho_highreso.pd

    Critical Thinking in Nursing Education: Literature Review

    Get PDF
    The need for critical thinking in nursing has been accentuated in response to the rapidly changing health care environment. Nurses must think critically to provide effective care whilst coping with the expansion in role associated with the complexities of current health care systems. This literature review will present a history of inquiry into critical thinking and research to support the conclusion that critical thinking is necessary not only in the clinical practice setting, but also as an integral component of nursing education programs to promote the development of nurses’ critical thinking abilities. The aims of this paper are: (a) to review the literature on critical thinking; (b) to examine the dimensions of critical thinking; (c) to investigate the various critical thinking strategies for their appropriateness to enhance critical thinking in nurses, and; (d) to examine issues relating to evaluation of critical thinking skills in nursing.</ul

    Platform Deformation Phase Correction for the AMiBA-13 Coplanar Interferometer

    Get PDF
    [[abstract]]We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[booktype]]紙本[[countrycodes]]US
    corecore