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ABSTRACT

We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of
a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce
extra components into the geometric delay of each baseline and change the phases of observed visibilities. The
reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-
Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data
with about 20 mount pointing positions. We then used the differential optical pointing error between two optical
telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation
model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth
and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA
interferometric data, we recover 50%–70% flux loss due to phase errors. This allows us to restore more than 90%
of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other
coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis
of the upcoming science results of AMiBA-13.
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1. INTRODUCTION

Coplanar interferometers have been used for cosmo-
logical observations for years. Several known coplanar
interferometers—including the Degree Angular Scale Interfero-
meter (DASI; Leitch et al. 2008), the Cosmic Background
Imager (CBI; Padin et al. 2001), and The Yuan-Tseh Lee
Array for Microwave Background Anisotropy (AMiBA; Ho
et al. 2009)—are dedicated to a variety of topics in cosmology. A
coplanar interferometer array benefits from several advantages
over an array of individually steerable antennas. Most notably,
the coplanar design is good for close-packing a large number of
small antennas without the worry of shadowing each other. The
servo design of a coplanar array is also simpler because there is
no need to control individual antennas simultaneously.

AMiBA is a coplanar radio interferometer for research in
cosmology. With an operating frequency band between 86 and
102 GHz, which corresponds to a wavelength ≈3 mm, the
main goal of AMiBA is to map the Sunyaev–Zeldovich effect
(Sunyaev & Zel’dovich 1972) in galaxy clusters. The AMiBA
antennas and receivers are mounted on a 6 m carbon fiber
platform. The platform itself is mounted on a hexapod mount.
The mount allows the platform to be pointed to all the positions
in the sky above an elevation of 30◦. The mount can also rotate
the platform within a ±30◦ range around the normal direction.
The polarization angle rotated around the normal direction is
called the hexpol hereafter.

With seven platform-mounted 0.6 m antennas, the former
AMiBA-7 observed six galaxy clusters in 2007 and 2008. High-

quality science data were obtained for these six clusters with
AMiBA-7. An overview of AMiBA-7 is given in Ho et al.
(2009). Koch et al. (2009) detailed the mount and the platform
of AMiBA. The stiffness of the AMiBA platform is studied in
Huang et al. (2011). The introductions of a correlator and a
receiver can be found in Li et al. (2006) and Chen et al. (2009).
The details of AMiBA-7 observation, calibration, data analysis,
foreground contamination estimation, and quality checking are
given in Lin et al. (2009), Wu et al. (2009), Liu et al. (2010),
and Nishioka et al. (2009). The science results of AMiBA-7
are shown in Huang et al. (2010), Liao et al. (2010), Liu et al.
(2010), Wu et al. (2009), and Umetsu et al. (2009).

In 2008 and 2009, AMiBA was upgraded to AMiBA-13,
which has 13 1.2 m dishes (Koch et al. 2011) mounted on the
original AMiBA-7 platform. The collecting area of AMiBA-13
is 7.5 times that of AMiBA-7. The angular resolution of AMiBA
was also improved from 7′ to 2′. With the new AMiBA-13, we
can observe fainter objects with a shorter integration time. The
ability of AMiBA-13 to constrain intracluster gas models was
predicted by Molnar et al. (2010). Figure 1 shows pictures of
AMiBA-7 and AMiBA-13.

Driven by the six legs of the hexapod mount, the platform of
AMiBA undergoes complicated pushing and pulling forces from
the actuators. The reaction from the actuators, combined with
the gravity loading of the interferometer array, cause deforma-
tions of the platform. Using photogrammetry, the deformation
of the AMiBA platform was measured to be up to several hun-
dred micrometers (see Huang et al. 2008; Koch et al. 2008).
The saddle-shaped platform deformation, which changes its
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Figure 1. Pictures of AMiBA-7 (left) and AMiBA-13 (right). The antennas (0.6 m for AMiBA-7 and 1.2 m for AMiBA-13) and receivers are mounted in a compact
configuration on the 6 m platform.

amplitude and direction with different platform pointing and ro-
tation angles, was found to be repeatable in the photogrammetry
data. Since we use platform-mounted optical telescopes (OTs)
to calibrate the pointing of the mount, the change of the platform
deformations, also induces a change in the relative tilt between
the OTs and the platform itself. We found differences in the opti-
cal pointing measurement to be ≈1′. Koch et al. (2008) described
how the pointing errors were dealt with in the stage of AMiBA-7.

The other important effect of platform deformations is phase
delay. The deformations of the platform will induce extra
geometric delays between different antenna elements. In other
words, these elements are no longer in the same plane. Those
geometric delays will cause artificial phase delays in the
observed visibilities from each baseline. For AMiBA-7, all the
antennas were mounted at the radius r � 1.2 m. Within this
range, the platform generally deforms by less than 0.3 mm,
or 0.1 times the observing wavelength of AMiBA. Therefore,
the phase delays are negligible in the AMiBA-7 data. On the
other hand, antennas are mounted on the whole 6 m platform
for AMiBA-13. The geometric delays between antennas can
easily rise to 0.5 times of the observing wavelength. With
this magnitude of geometric delays, the signals are essentially
decorrelated, thereby significantly distorting the reconstructed
images. Therefore, it is important to find a way to correct
the phase delays. The same problem can also be encountered
by other coplanar interferometers. Hence, our experience of
correcting the phase delays might be useful for other telescopes.
Furthermore, the way we model and determine the platform
deformations can also be applied to studying the pointing-
dependent deformations of single-dish telescopes.

In this paper, we detail the way we model the platform
deformations and correct the phase delays (see Figure 2 for
the flowchart of our method). In Section 2, we describe a new
way to model the deformations of the AMiBA platform. We
fit the photogrammetry data with a new two-rotating saddle
model. We describe how we correlate the pointing errors of
the two platform-mounted OTs to fit the model parameters for
the entire pointing parameter space of the mount. In Section 3,
we show how we correct the visibility database using the
platform deformation model. In order to verify the efficiency
of our phase correction method we apply it to the data of
planets and radio sources at different pointings on the sky. The
results are also shown here. In Section 4, we briefly discuss

the improvement of data analysis contributed from the phase
correction method and the limits of such corrections.

2. PLATFORM DEFORMATION MODELING

Before correcting the phase delays contributed by plat-
form deformations, we need to understand more about the
phenomenon. The platform deformations of AMiBA are known
to be a function of the pointing and the polarization angle of
the mount with a repeatability within 50 μm (Huang et al. 2008;
Koch et al. 2008), which is much smaller than the wavelength
of 3 mm considered for its application. Therefore, the platform
deformations are considered to be modelable and correctable.
We describe the photogrammetry-measured platform deforma-
tion with an empirical model. However, the photogrammetry
surveys were very time-consuming and were, therefore, only
done for a sample of select limited positions. Using two OTs
mounted on the platform, it was verified that the relative point-
ing errors between the two follow their relative tilts predicted
by the platform deformation patterns. Then we used the rela-
tive pointing errors between the two OTs over the whole sky to
determine an empirical model of how the deformation pattern
changes with pointing.

2.1. Photogrammetry Data and Deformation Modeling

Since the loading of the AMiBA platform changed after the
upgrade to 13 elements, we did a new photogrammetry test
in 2009 November (see Huang et al. 2008 for the details of
the photogrammetry test). The test included 26 sets of data.
Each set of data contains several hundreds of photogrammetry
measurements taken at different positions on the platform with
specified platform pointing and polarization angles. These 26
sets can be split into three groups. The 11 data sets in the
first group share the same platform el = 60◦ and polarization
angle hexpol = 0◦. Their platform pointings were distributed
uniformly in azimuth between 0◦ and 360◦. The platform
pointings of the nine data sets in the second group were
distributed in the same way in azimuth with el = 40◦ and
hexpol = 0◦. The other six data sets were taken at el = 30◦,
az = 0◦, and six different polarization positions. Part of the
results are shown in Figure 3.

The platform deformation can be described as a
“saddle pattern,” which can be parameterized as follows
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Figure 2. Flowchart of our method to correct the platform deformation for AMiBA. The red arrows show the real situations we met.
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Figure 3. Platform deformation. Mount pointing positions (az, el, and hexpol) are indicated in the titles of each panel. The unit of x and y is meter, and the unit of dz

in color is millimeter. Obvious saddle features are apparent for most positions.

(Koch et al. 2008):

dz = A[(x2 − y2) cos 2θ + 2xy sin 2θ ], (1)

where dz is the platform deformation in the normal direction of
the platform, and x and y indicate the position on the platform.
Here, we set the east direction as positive x, north as positive y,
and positive z above the platform. The saddle pattern is described
by two parameters: A, the amplitude of the saddle pattern, and
θ , the phase of it.

For each set of photogrammetry data, we can find the best
fit A and θ . The best-fit parameters of the first two groups of
photogrammetry data sets are shown in Figure 4 as blue dots.
As we can see, the amplitude of the best-fit saddle pattern has
a three-fold symmetry. The phase of the saddle pattern changes
as θ = 0.5az + θ0 + ε, where θ0 is a constant, and ε looks like a
periodic perturbation. (Note: because of our definition of x and
y, the directions of θ and az are opposite from each other.)

It can be shown that if there are two saddle patterns,
dz1(x, y) = A1[(x2 −y2) cos 2θ1 +2xy sin 2θ1] and dz2(x, y) =
A2[(x2−y2) cos 2θ2 +2xy sin 2θ2], the combination of these two
saddle patterns dz1 + dz2 = A3[(x2 − y2) cos 2θ3 + 2xy sin 2θ3]
will be another saddle pattern. Furthermore, we can derive
that A3 cos 2θ3 = A1 cos 2θ1 + A2 cos 2θ2 and A3 sin 2θ3 =
A1 sin 2θ1 + A2 sin 2θ2. In other words, a saddle pattern can be
described as a vector p with absolute value A and phase angle
2θ , and the combinations of saddle patterns can be considered
summations of vectors.

We can consider the best-fit saddle pattern parameters shown
in Figure 4 as the absolute value and half of the phase angle of
p. The three-fold symmetry of | p| and the periodic perturbation
of angle( p) can be explained as the summation of two vectors
p1 = (A1 cos α1, A1 sin α1) and p2 = (A2 cos α2, A2 sin α2)
rotating along the opposite directions as az grows. If α1 rotates
with angular velocity w1 = 1 as the azimuth grows and α2
rotates with angular velocity w2 = −2, p1 and p2 will be

parallel to each other while az = 0, 2/3π, 4/3π , and anti-
parallel while az = 1/3π, π, 5/3π . That can explain the three-
fold symmetry of A, which corresponds to the absolute value of
the summation of p1 and p2. If we assume A1 > A2, the phase
angle α of the combined vector p will be swinging around α1
with a period of 2/3π . That can also explain what we see in
Figure 4.

The two-saddle model described above can be summarized
as follows:

dz = A1[(x2 − y2) cos 2θ1 + 2xy sin 2θ1]

+ A2[(x2 − y2) cos 2θ2 + 2xy sin 2θ2], (2)

where

θ1 = az

2
+ φ1

θ2 = − az + φ2. (3)

Equation (2) remains a saddle pattern.
There are four parameters: A1, A2, φ1, and φ2, in the model

described by Equation (2). The green curves in Figure 4 show
A and θ as predicted by our model with the parameters fitted to
the photogrammetry data. We found that our model fits the blue
dots well. We also noticed that both A1 and A2 grow significantly
as the platform elevation is lowered from 60◦ to 40◦. But φ1 and
φ2 do not change much (<10◦) between elevation 40◦ and 60◦.

There can be additional secondary features of the platform
deformation other than the saddle pattern model described
above. To investigate this, we subtract the best-fit saddle
patterns from each set of photogrammetry data, then average
the residuals over pointing azimuth. By averaging over pointing
azimuth, we can extract the deformation features independent
of it. The left and middle panels of Figure 5 show the averaged
residual data at elevation 40◦ and 60◦, respectively. We note
that the averaged residual has isotropic features. The residual
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Figure 4. Saddle pattern amplitude and phase of platform deformation at el = 60◦ (left two panels) and 40◦ (right two panels). The hexpol is 0◦. The blue dots and
green curve show the photogrammetric measurements and model prediction, respectively.

Figure 5. Left and middle panels show the residual platform deformation after averaging out all the information dependent on pointing azimuth. The elevation of the
left and middle panels are 40◦ and 60◦, respectively. The units for x and y are meters, and the units for dz are millimeters. All data were taken at hexpol = 0◦. The
right panel shows the azimuthally averaged platform deformation after removing the contribution of pointing azimuth.

dz tends to be higher at the center and lower at the edge of the
platform. In the right panel of Figure 5, we average the residual
feature along concentric circles, which share the same center
with the platform itself, on the platform. The difference of dz
at the center and the edge is about 0.15 mm, or 0.05λ. The
azimuthal average does not change much (<0.03 mm) as the
pointing elevation changes between 40◦ and 60◦.

We are now addressing the question of whether the secondary
features are important to our phase correction work. Consider-
ing our calibration method, if the cluster scans and the calibra-
tion scans share the constant secondary-feature deformation, the
phase delays induced will be subtracted during the calibration
scheme. Therefore, the key concern is how the platform defor-
mation changes with platform position. This will then determine
how to calibrate the data in the absence of a nearby strong cal-
ibrator. Based on this consideration, the saddle pattern model
described in Equation (2) plays the main role in our platform de-
formation corrections. Since the secondary deformation pattern
only changes within 0.01λ as pointing changes from el = 40◦ to
el = 60◦ at �95% of positions on the platform (i.e., comparing
the left and middle panels of Figure 5), it is considered to be
negligible in this work. Consequently, secondary features are
not further taken into account in our correction scheme.

2.2. Correlation of Two Optical Telescopes

In principle, we can directly measure the platform de-
formation with photogrammetry measurements. However, it

takes time to sample the entire three-dimensional point-
ing parameter space (az, el, and hexpol) with accept-
able resolution. Fortunately, there is another way to
sample the space using the optical pointing measure-
ment to estimate the platform deformation model for the
whole sky.

There are two OTs mounted on the AMiBA platform to test
the pointing of the mount. Because the pointing of a single OT
can be significantly affected by the platform deformation and
other local effects, we use two of them to do cross checking.
The first optical telescope (OT1) is mounted at the distance of
about 0.6 m away from the center point of the platform. The
other optical telescope (OT2) is mounted at the same radius, but
120◦ apart from OT1.

The main idea of the optical pointing test is that the difference
of pointing errors taken by two OTs provides information of the
relative tilt between two OTs. We can then use the information of
this relative tilt to fit the platform deformation model described
above. Compared with the several hundreds of samples provided
by the several hundreds of targets on the platform in the
photogrammetry test for a single pointing position, the sampling
for a single pointing position provided by optical pointing is
really poor (only two samples for a pointing position). However,
if the platform deformation itself can be described well by
a simple model like our two-saddle pattern model, the poor
sampling on the platform will not cause any severe problems.
On the other hand, the optical pointing test can provide ∼500
samples per night in the parameter space of platform pointing
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Figure 6. Upper left panel is the X-direction pointing error measured by OT1, the middle left panel is the X-direction pointing error measured by OT2, and the lower
left panel is the difference between OT1 and OT2 measurement on X-direction pointing error. The panels in the right column show the Y-direction pointing error in the
same order. The units for az and el are both degrees, and the units for pointing error are arcseconds. All the pointing errors in this figure are obtained at hexpol = 0◦.
The interpolation table built based on the OT1 pointing test was applied to correct the pointing error.

and polarization angle. With photogrammetry measurements it
would take two months to achieve the same sampling level. Since
we need to build all-sky phase corrections, optical pointing tests
are more efficient and suitable for this goal.

Our optical pointing tests for AMiBA-13 were conducted in
2010. We followed a similar procedure as described in Koch
et al. (2008). The sky was partitioned into 500 zones with equal
solid angle above elevation = 30◦. One bright star per zone was
chosen. We took images at hexpol = −24◦,−12◦, 0◦, 12◦, and
24◦ for each star with two OTs. Therefore, we have 10 images
for each star. It took five nights to finish the optical pointing
observations. Then we grouped those 2500 images according
to OTs and hexpol. With each image we derived the pointing
error at a specified pointing coordinate. Therefore, we have 500
data points of pointing error with each combination of specified
OT and polarization. After removing the constant tilt of the OTs
(Koch et al. 2008), we interpolated a pointing error map (e.g.,
Figure 6) at different hexpol for each OT.

First, we use OT1 to construct an interpolation table (IT),
which is used to correct the mount pointing error. The rms of
OT1 pointing error is about 0.′3 with IT correction. However,
the difference of pointing between OT1 and OT2 is at the level
of 1′–2′. Figure 6 shows the pointing errors of both OTs and the
differences between the errors. In Figure 6, we have transformed
the pointing errors into platform coordinates.

The differences in pointing errors in the X- and Y-directions
can be expressed as perrdiff,x(az, el) and perrdiff,y(az, el),
respectively. We fix the elevation to extract

gx,el0 (az) = perrdiff,x(az, el = el0)

gy,el0 (az) = perrdiff,y(az, el = el0). (4)

We then perform Fourier transformations on gx and gy with
respect to az. Finally, we get Fourier modes as functions of
elevation.

Figure 7 shows the Fourier transformation results of the
relative pointing errors between two OTs. As shown in Figure 7,
the dominating Fourier modes of the pointing differences are the
modes with n = 0, 1, 2. The higher order modes are negligible.

Ideally, the relative pointing errors between OTs can be
explained by the platform deformation. Here, we assume that

the pointing errors measured by the OTs are the combination
of the mount pointing error and the relative tilt between OT
and platform. We also assume that the relative tilt between OT
and platform is contributed by two origins: generic tilting of the
OT box (assumed to be constant) and the platform deformation
(assumed to be variable). We adopted the method described in
Koch et al. (2008) to remove the constant tilt. In this section
we further assume that the remaining tilt can be fully explained
by the local normal vector of the platform at the positions of
the OTs. Because of the platform deformation, the local normal
vector will not be exactly parallel to the true pointing of the
platform. That will cause a relative tilt of the OTs.

With Equation (1), the normal vector change contributed by
the saddle-shaped platform deformation can be written as

δnx,sadd = −∂dz

∂x
= − 2A(y sin 2θ + x cos 2θ )

= − 2Ar cos(α − 2θ )

δny,sadd = −∂dz

∂y
= 2A(y cos 2θ − x sin 2θ )

= 2Ar sin(α − 2θ ), (5)

where r and α are the polar coordinate coefficients of the OT
location.

With Equation (2), δnx,sadd and δny,sadd can be written as the
combination of two saddle pattern contributions:

δnx,sadd = − 2A1r cos(α − 2θ1) − 2A2r cos(α − 2θ2)

δny,sadd = 2A1r sin(α − 2θ1) + 2A2r sin(α − 2θ2), (6)

where A1, A2, φ1, and φ2 are assumed to be functions of
elevation.

Considering the common r = 0.6 m of the two OTs, we
can derive the relative tilt Δnx,sadd and Δny,sadd, which can be
attributed to platform deformation, between two OTs as follows:

Δnx,sadd = 2A1r[(cos Δα − 1) cos β1 − sin Δα sin β1]

+ 2A2r[(cos Δα − 1) cos β2 − sin Δα sin β2]

Δny,sadd = 2A1r[(1 − cos Δα) sin β1 − sin Δα cos β1]

+ 2A2r[(1 − cos Δα) sin β2 − sin Δα cos β2],

(7)
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Figure 7. Amplitude of Fourier modes obtained by Fourier transforming the difference in pointing errors measured by two OTs (as shown in Figure 6) along
iso-elevation bands. The left panel shows the results obtained with the X-direction pointing error, and the right panel shows the Y-direction results.

where β1 = α1 − az − 2φ1, β2 = α1 + 2az − 2φ2, and
Δα = α2 − α1. α1 and α2 are the angular positions of OT1
and OT2, respectively.

We can further put Δα = −2π/3 into Equation (7) and obtain

Δnx,sadd = 2
√

3A1r cos

(
β1 − 5π

6

)
+ 2

√
3A2r cos

(
β2 − 5π

6

)

(8)

Δny,sadd = 2
√

3A1r cos
(
β1 − π

3

)
+ 2

√
3A2r cos

(
β2 − π

3

)
.

(9)

Considering the definition of β1 and β2, we can see that
the two terms on the right-hand side of Equations (8) and (9)
correspond to the n = 1 mode and n = 2 mode in Figure 7.
(Note that the measured pointing error differs from the tilt of
the OT by a minus sign.) Therefore, we can use the amplitudes
and phases of n = 1 and n = 2 modes to determine deformation
model parameters A1, A2, φ1, and φ2 as functions of elevation.
Furthermore, we can also derive these parameters at different
hexpols with different sets of pointing error data. In other
words, we can predict the platform deformation using the
model (Equation (2)) with given pointing coordinates and a
polarization angle of the platform. With the knowledge of the
location of each antenna on the platform, we can also predict
the vertical displacements of all of the 13 antennas, which will
lead us to the crucial geometric delays and phase delays.

However, the n = 0 mode in Figure 7 is still not explained by
our saddle model. Because this n = 0 mode is independent of the
pointing azimuth, we should be able to see significant changes
in the residual as shown in Figure 5 at different elevations if
this n = 0 mode is caused by the global pattern of the platform
deformations. In Figure 5, we see small differences between the
residual deformation at el = 40◦ and el = 60◦. This difference
is not large enough to explain the large n = 0 mode shown
in Figure 7. Consequently, we think this n = 0 mode might

be mainly due to some local effect near the locations where
the OTs were mounted. In this case, we do not need to further
consider the n = 0 mode while determining the global platform
deformation pattern. It is shown in Section 3.1 that the platform
deformation corrections fit the observed phases of visibilities
very well without taking into account the n = 0 mode.

One can also combine more than two rotating saddle patterns
by rewriting Equation (2) as a linear combination of rotating
saddle pattern terms such as Am[(x2−y2) cos 2θm+2xy sin 2θm],
where θm = (m/2) × Az + φm, and m is a integer. Following
the similar method from Equations (6)–(9), one can see that the
saddle pattern rotating with θm corresponds to a Fourier mode
with n =| m |. Therefore, for a platform with a verified saddle
pattern deformation, one can use Fourier modes of relative
pointing errors of different OTs to determine the parameters of
each of the rotating saddle patterns. In the case of AMiBA-13,
the Fourier modes with n > 2 are negligible. This fact implies
that the saddle patterns with larger m are also negligible.

3. CORRECTION FOR PLATFORM DEFORMATION

Using the model parameters derived above at different ele-
vations, one can reconstruct the platform deformation with a
given platform pointing using Equation (2). By feeding the po-
sitions of the 13 antennas on the platform into the platform
deformation model, the vertical displacement of each antenna
di can be obtained. In this section, we will describe how we
verify the model-predicted di with real radio observations, and
the way we correct the phase errors induced by platform de-
formations using the model above. We will also present how
much the performance of AMiBA-13 has been improved with
this correction.

3.1. Solving Deformations from Visibilities

One important aspect of verification of the parameterized de-
formation model is to check if the modeled geometric delays are
consistent with those measured from the visibility phases. For
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Figure 8. Comparison between SVD solutions of vertical offsets (black dots) and predicted vertical offsets of the model (green dots). The SVD solutions were solved
from the data of seven 6 hr long tracks on Jupiter. The x-axis is the hour angle in units of degrees, and the y-axis is the vertical offset in units of millimeters. The
vertical offsets of antenna 1 are set to be 0 and not shown here. The antenna 9 was temporarily offline while doing the long tracks on Jupiter.

this purpose, we observed Jupiter, which is considered a point
source for AMiBA, with the two-patch subtraction method (Wu
et al. 2009) over several nights, covering as much as possible
in the range of hour angles. The uncertainty in the observed
visibility phases was dominated by systematic effects, while
thermal noise could be ignored. The major systematic effect
was attributed to the band smearing effect when transforming
the limited four-lag correlations to visibilities in two frequency
channels. Given a fixed transformation kernel, this effect sensi-
tively depends on the bandpass function of the receiver, inter-
mediate frequency (IF) electronics, and the individual analog
correlators (Lin et al. 2009). The systematic uncertainty on the
visibility phase thus has an antenna-based contribution (from
receivers and IFs) and a baseline-based contribution (from cor-
relators). One thing to remember is that the band smearing effect
depends on the total geometric delay (i.e., source offset and plat-
form deformation), and that it varies with telescope positions.

The measured visibility phase between any antenna pair is
related to the geometric delays, instrumental delays, phase
difference of local oscillator signals, and the lag-to-visibility
systematics. With a strong point source, the pointing offset
can easily be determined from the coherent phase distortion
and be corrected. Furthermore, Jupiter data taken each night
were self-calibrated with the visibility taken closest to its transit
(highest elevation), leaving only effects that vary with telescope
positions:

φij = k(d̄i − d̄j ) + (ϕi − ϕj ) + ψij , (10)

where φij is the calibrated phase between antenna i and j, k is
the wave number, d̄i is the vertical displacement for antenna

i relative to when it is near transit, ϕi is the antenna-based
relative systematic uncertainty, and ψij is the baseline-based
relative uncertainty.

Since the baseline-based systematics do not correlate with
antennas, as an approximation, ψij can be dropped when solving
Equation (10). Equation (10) can be rewritten as

φα = (δβi − δβj )αd̃β

= Mαβd̃β, (11)

where the index α refers to distinct pairs of antenna i and j, β
refers to distinct antennas, δβi denotes the Kronecker delta, and
d̃β is the relative vertical displacement of antenna β including
the antenna-based systematics. In the case of AMiBA-13, we
have index i, j, and β ranging from 1 to 13, referring to 13
antennas, and index α ranging from 1 to 78, referring to 78
distinct antenna pairs.

The sparse matrix is clearly not square and is singular. We
used the LAPACK routine sgesvd to perform the singular value
decomposition (SVD) of the sparse matrix Mαβ , zeroing singular
values smaller than 10−6, and then constructed the pseudo-
inverse matrix M−1

βα that was applied to the measurement d̃α .
However, since the equations are based on differences of the
variables, an arbitrary constant can be added to the solutions.
Here, we define the vertical displacements of the central antenna
1 to be zero (Figure 8).

Once the solutions of the vertical displacements of each
antenna from real radio observations have been obtained,
one can compare the solutions with the predictions of
the model above. Figure 8 shows the comparison between

8
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Figure 9. Upper panels show the comparison between the peak values constructed from phase-corrected visibilities (blue stars), uncorrected visibilities (black dots),
and the simulated perfect phase correction (red crosses), of Saturn (left) and Jupiter (right) data. The middle panels show the corrected peaks and uncorrected peaks
divided by perfect peaks. The lower panels show the pointing elevations of Saturn and Jupiter at each frame. The declination of Saturn and Jupiter was about −2◦ and
+11◦, respectively. All the Saturn data were calibrated by the Saturn two-patch scans at the highest elevation every night. All the Jupiter data were calibrated by the
Jupiter two-patch scans at az ∼ 119◦ and el ∼ 72◦ every night. The expected flux of Saturn and Jupiter was 238 Jy and 1600 Jy, respectively.

model-predicted vertical displacements, and those solved from
radio observation, for each antenna. As shown in Figure 8,
the model predictions match the solved vertical displacements
within a 0.2 mm range for most of the antennas and pointing
coordinates. The good match between solved d̃β and the pre-
dictions of deformation model is a good evidence showing that
other antenna-based systematics are secondary compared with
the platform deformation.

3.2. Phase Correction of Visibilities

With the platform deformation model and pointing coordi-
nate, we can predict the di and dj required in Equation (10)
to derive the geometric phase delay φij , which is induced by
the platform deformation, for each pair of antennas. We simply
multiply the calibrated visibilities Vij,calibrated by the exponen-
tial term exp[i(φij,target − φij,calibrator)] to correct the platform
deformation induced phase error. φij,target and φij,calibrator are φij

derived with the coordinates of the observed target and calibra-
tion events, respectively.

We used Jupiter and Saturn data to quantify the improvement
of the phase correction. Because the Jupiter and Saturn data
are self-calibrated, we know exactly how strong the central flux
should be with a perfect correction. In order to do that, we take
several two-patch scans across the transit point on Jupiter and
Saturn. Then we use one of the planet scans for each night
as a calibrator to calibrate the data of the other scans, and
construct the images with and without the platform deformation
phase correction. For Saturn, we choose the scans closest to
the transit point as the calibrators. For Jupiter, we choose scans
with hour angles of about −1 hr to control the pointing error.
Each two-patch scan was used to reconstruct one image with
phase correction and one without correction. Figure 9 shows
the comparison of the reconstructed central fluxes of Saturn
with and without the phase corrections. We can see that the
phase correction can recover about 30% of flux lost of Saturn at
el ∼ 45◦. We can also recover about 50% of flux lost of Jupiter
at el ∼ 55◦ (see Figure 9).

We also constructed Saturn and Jupiter images using only
amplitudes of the visibilities to simulate perfect phase

correction. The peak values of these images are shown as red
crosses in the upper panels of Figure 9. By looking at these
red crosses, we can find out that there will still be some flux
lost even with a perfect phase correction. One possible reason
for this is likely to be the band smearing effect. Since AMiBA
operates in a wide frequency band with two frequency channels,
the incoming signal within a wide frequency range is integrated
together. However, the phase delay due to the same geometri-
cal delay changes at different frequencies. Therefore, the signal
integrated over a wide band is smeared by non-constant phase
changes within the band. This smearing effect reduces the am-
plitude of observed visibilities. In order to evaluate the efficiency
of the phase correction itself, we divided the peak flux values
reconstructed with and without phase correction by the peak
values derived with complete phase removal. The results are
shown in the middle panels of Figure 9. The phase correction
can recover more than 50% of flux lost due to phase error, restor-
ing more than 90% of the flux of the “perfect phase correction,”
in most of the planet two-patch scans.

If the flux loss is due to band smearing, given that the
amplitude of the platform deformation increases as the pointing
elevation decreases, one can expect that simulated flux should
decrease while the elevation becomes lower. The red crosses
in the upper panels of Figure 9 show the expected trend. By
simulating the perfect phase correction with Saturn and Jupiter
data, we see that the remaining flux lost above elevation 40◦
is smaller than 10%. Since the response across the entire
bandwidth has not been measured in detail, it is difficult to
estimate and correct the band smearing effect.

3.3. Verification of Phase Correction with Radio Sources

In the sections above, we corrected the phase delays and
verified the efficiency of our correction with Jupiter and Saturn
data. However, we can only verify the method within part of
the pointing range with small changes of the declination of
the planets. So we selected several radio sources with expected
fluxes higher than 2 Jy at 90 GHz from the ATNF catalog.7

7 http://www.narrabri.atnf.csiro.au/calibrators/
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Figure 10. Illustration of the improvement in image reconstruction contributed by phase correction. The target here is QSO B0355+508. The upper panels show
the dirty maps reconstructed with visibilities after phase correction, while the lower panels show the results without phase correction. The angular units here are
arcseconds, and the intensity units are mJy. The azimuth and elevation of the platform pointings are shown in the image titles.

We then did continuous two-patch scans on these radio sources.
With one two-patch scan containing two four-minute patches,
we can achieve signal-to-noise ratios higher than 30 for these
strong radio sources. Other than the sources from the ATNF
catalog, Neptune is also included in the samples of radio
sources. The declinations of these targets are evenly spread
between +50◦ and −30◦. The calibrator for this test is Jupiter.
Most of the calibration scans were taken near az = 115◦
and el = 73◦, to control the pointing error induced by the
calibration process. Figure 10 shows an example of the impact
of phase correction on the image making. The peak fluxes of the
images constructed with uncorrected and corrected visibilities
are shown in Figure 11.

Assuming the phase correction is valid for these radio sources,
we expect to see two features. The first one is an overall flux
rise. The variances of the observed fluxes are also expected to be
reduced after correction because phase correction is supposed
to be able to remove the flux variances caused by deformation.
As we can see in Figure 11, the phase correction increases the
observed flux in almost all the two-patch scans. The impacts of
phase correction are more significant at low elevations as we
expected. The variances of the flux between different scans on
the same target are also reduced after phase correction.

The phase corrections are expected to be smaller while the
pointing of the observations is close to the calibration events, so
one can also expect to see smaller flux changes after correction at
pointing coordinates closer to the calibration events. Since most
of the calibration events are in the eastern part of the sky, we
can expect a stronger impact of phase correction in the western
part of the sky as what we see in real data.

As proven to be valid on point radio sources, the phase correc-
tion method is applied to galaxy cluster data from AMiBA-13
in K.-Y. Lin et al. (2013, in preparation).

4. DISCUSSIONS AND CONCLUSION

The deformation of the AMiBA platform is negligible in
the AMiBA-7 configuration, but becomes a critical component
of image reconstruction in the AMiBA-13 configuration. We
present a new way to cope with the phase delays induced by
the platform deformation. We first use photogrammetry data
taken at a few platform pointings to derive a generic platform
deformation model. Then we use the difference of the optical
pointing errors measured by two platform-mounted OTs to

estimate the deformation parameters within the entire pointing
parameter space of the AMiBA platform. With the platform
deformation modeling and phase correction method, we can
control the flux loss to be less than 10% for most of the platform
pointings.

The major part of the remaining flux loss is likely to be the
result of a band smearing effect which is difficult to quantify
exactly due to the low-frequency resolution of the current
AMiBA. With known response functions of each receiver and
each baseline, it would be possible to further correct the band
smearing effect with the platform deformation model. However,
this part has currently not yet been developed.

The saddle pattern deformation of the AMiBA platform has
been confirmed with both AMiBA-7 and AMiBA-13 configura-
tions. Photogrammetry tests also show that changing the loading
on the platform does not alter the saddle pattern deformation of
it. Therefore, if the AMiBA antenna configuration changes in
the future, one can perform a multi-OT pointing test and use
Equation (5) to check the saddle pattern. If the saddle pattern is
verified with a multi-OT test, Fourier transformation of relative
pointing errors between OT pairs can be done in the same way as
described in Section 2.2. The azimuthal dependence of phases
of saddle patterns can be determined by different Fourier modes
of gx and gy, as described in Section 2.2. If the multi-OT test
results are not consistent with Equation (5), more photogramme-
try might be needed to determine the new platform deformation
pattern. The comparison between three or more OTs can also
help to determine the origin of the Fourier mode with n = 0.
The n = 0 mode is likely to be related to some local effects on
or near a specified OT if the n = 0 mode is only seen in the OT
pairs that contain it.

The deformations of other instruments are not guaranteed
to be a saddle pattern. Therefore, while applying the idea of
this work to another instrument, photogrammetry data should
be taken at several well chosen mount position to understand
the deformation model for that specified instrument. However,
using OTs to probe the model parameters for all of the telescope
positions would still be valuable because photogrammetry tests
for all of the positions could be avoided, which saves a lot of
time.

Platform deformation can also be a critical issue for ob-
servation and image reconstruction as outlined here with
other coplanar interferometers while the platform is not stiff
enough. The same approach can be applied to other coplanar
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Figure 11. Impact of phase correction on observed flux of radio sources and Neptune. The upper panels for each target show the observed fluxes. The black dots are
uncorrected fluxes and the red stars are corrected ones. Each dot or star shows the result from one two-patch scan which takes 8 minutes. The middle panels show the
ratios between corrected fluxes and uncorrected ones. The lower panels show the elevations of each two-patch scan.

interferometers while coping with the platform deformation
problem. It is also possible to apply this approach to investigat-
ing the deformation of single-dish telescopes with several OTs
mounted on different locations on the primary mirror. The work
of this paper also forms the basis for the AMiBA-13 data analy-
sis and science results. Now we are using the method described

in this paper to correct the galaxy cluster data of AMiBA-13.
The corrections and analysis in the cluster data will be presented
in K.-Y. Lin et al. (2013, in preparation).
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