1,141 research outputs found

    Working Memory Impairments in Chromosome 22q11.2 Deletion Syndrome: The Roles of Anxiety and Stress Physiology

    Get PDF
    Stress and anxiety negatively impact the working memory system by competing for executive resources. Broad memory deficits have been reported in individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS). We investigated anxiety and physiological stress reactivity in relation to visuospatial working memory impairments in 20 children with 22q11.2DS and 32 typically developing children (M = 11.10 years, SD = 2.95). Results indicate reduced post-stress RSA recovery and overall increased levels of cortisol in children with 22q11.2DS. Additionally, anxiety mediated the relationship between 22q11.2DS and visuospatial working memory impairment. However, there was no indication that stress response physiology mediated this association. Results suggest that anxiety exacerbates impaired working memory in children with 22q11.2DS. Thus, treatment and intervention methods for children with 22q11.2DS should address anxiety related symptomology

    Developmental trajectories of cortical thickness by functional brain network: The roles of pubertal timing and socioeconomic status

    Get PDF
    The human cerebral cortex undergoes considerable changes during development, with cortical maturation patterns reflecting regional heterogeneity that generally progresses in a posterior-to-anterior fashion. However, the organizing principles that govern cortical development remain unclear. In the current study, we characterized age-related differences in cortical thickness (CT) as a function of sex, pubertal timing, and two dissociable indices of socioeconomic status (i.e., income-to-needs and maternal education) in the context of functional brain network organization, using a cross-sectional sample (n = 789) diverse in race, ethnicity, and socioeconomic status from the Lifespan Human Connectome Project in Development (HCP-D). We found that CT generally followed a linear decline from 5 to 21 years of age, except for three functional networks that displayed nonlinear trajectories. We found no main effect of sex or age by sex interaction for any network. Earlier pubertal timing was associated with reduced mean CT and CT in seven networks. We also found a significant age by maternal education interaction for mean CT across cortex and CT in the dorsal attention network, where higher levels of maternal education were associated with steeper age-related decreases in CT. Taken together, our results suggest that these biological and environmental variations may impact the emerging functional connectome

    A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO

    Get PDF
    The first simultaneous operation of the AURIGA detector and the LIGO observatory was an opportunity to explore real data, joint analysis methods between two very different types of gravitational wave detectors: resonant bars and interferometers. This paper describes a coincident gravitational wave burst search, where data from the LIGO interferometers are cross-correlated at the time of AURIGA candidate events to identify coherent transients. The analysis pipeline is tuned with two thresholds, on the signal-to-noise ratio of AURIGA candidate events and on the significance of the cross-correlation test in LIGO. The false alarm rate is estimated by introducing time shifts between data sets and the network detection efficiency is measured with simulated signals with power in the narrower AURIGA band. In the absence of a detection, we discuss how to set an upper limit on the rate of gravitational waves and to interpret it according to different source models. Due to the short amount of analyzed data and to the high rate of non-Gaussian transients in the detectors noise at the time, the relevance of this study is methodological: this was the first joint search for gravitational wave bursts among detectors with such different spectral sensitivity and the first opportunity for the resonant and interferometric communities to unify languages and techniques in the pursuit of their common goal.Comment: 18 pages, IOP, 12 EPS figure

    Search for gravitational waves from binary inspirals in S3 and S4 LIGO data

    Get PDF
    We report on a search for gravitational waves from the coalescence of compact binaries during the third and fourth LIGO science runs. The search focused on gravitational waves generated during the inspiral phase of the binary evolution. In our analysis, we considered three categories of compact binary systems, ordered by mass: (i) primordial black hole binaries with masses in the range 0.35 M(sun) < m1, m2 < 1.0 M(sun), (ii) binary neutron stars with masses in the range 1.0 M(sun) < m1, m2 < 3.0 M(sun), and (iii) binary black holes with masses in the range 3.0 M(sun)< m1, m2 < m_(max) with the additional constraint m1+ m2 < m_(max), where m_(max) was set to 40.0 M(sun) and 80.0 M(sun) in the third and fourth science runs, respectively. Although the detectors could probe to distances as far as tens of Mpc, no gravitational-wave signals were identified in the 1364 hours of data we analyzed. Assuming a binary population with a Gaussian distribution around 0.75-0.75 M(sun), 1.4-1.4 M(sun), and 5.0-5.0 M(sun), we derived 90%-confidence upper limit rates of 4.9 yr^(-1) L10^(-1) for primordial black hole binaries, 1.2 yr^(-1) L10^(-1) for binary neutron stars, and 0.5 yr^(-1) L10^(-1) for stellar mass binary black holes, where L10 is 10^(10) times the blue light luminosity of the Sun.Comment: 12 pages, 11 figure

    Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs

    Get PDF
    We present the results of a search for short-duration gravitational-wave bursts associated with 39 gamma-ray bursts (GRBs) detected by gamma-ray satellite experiments during LIGO's S2, S3, and S4 science runs. The search involves calculating the crosscorrelation between two interferometer data streams surrounding the GRB trigger time. We search for associated gravitational radiation from single GRBs, and also apply statistical tests to search for a gravitational-wave signature associated with the whole sample. For the sample examined, we find no evidence for the association of gravitational radiation with GRBs, either on a single-GRB basis or on a statistical basis. Simulating gravitational-wave bursts with sine-gaussian waveforms, we set upper limits on the root-sum-square of the gravitational-wave strain amplitude of such waveforms at the times of the GRB triggers. We also demonstrate how a sample of several GRBs can be used collectively to set constraints on population models. The small number of GRBs and the significant change in sensitivity of the detectors over the three runs, however, limits the usefulness of a population study for the S2, S3, and S4 runs. Finally, we discuss prospects for the search sensitivity for the ongoing S5 run, and beyond for the next generation of detectors.Comment: 24 pages, 10 figures, 14 tables; minor changes to text and Fig. 2; accepted by Phys. Rev.

    Searching for gravitational waves from known pulsars

    Get PDF
    We present upper limits on the amplitude of gravitational waves from 28 isolated pulsars using data from the second science run of LIGO. The results are also expressed as a constraint on the pulsars' equatorial ellipticities. We discuss a new way of presenting such ellipticity upper limits that takes account of the uncertainties of the pulsar moment of inertia. We also extend our previous method to search for known pulsars in binary systems, of which there are about 80 in the sensitive frequency range of LIGO and GEO 600.Comment: Accepted by CQG for the proceeding of GWDAW9, 7 pages, 2 figure

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Plasmodium falciparum Choline Kinase Inhibition Leads to a Major Decrease in Phosphatidylethanolamine Causing Parasite Death

    Get PDF
    This work was supported by Agencia Aragonesa para la Investigación y Desarrollo (ARAID), Ministerio de Economía y Competitividad (CTQ2013-44367-C2-2-P to R.H.-G.) and Diputación General de Aragón (DGA; B89 to R.H.-G.) and the EU Seventh Framework Programme (2007–2013) under BioStruct-X (grant agreement 283570 and BIOSTRUCTX 5186, to R.H.-G.). T.K.S. was supported by the Wellcome Trust grant 093228 and European Community’s Seventh Framework Programme under grant agreement No. 602773 (Project KINDRED).Malaria is a life-threatening disease caused by different species of the protozoan parasite Plasmodium, with P. falciparum being the deadliest. Increasing parasitic resistance to existing antimalarials makes the necessity of novel avenues to treat this disease an urgent priority. The enzymes responsible for the synthesis of phosphatidylcholine and phosphatidylethanolamine are attractive drug targets to treat malaria as their selective inhibition leads to an arrest of the parasite’s growth and cures malaria in a mouse model. We present here a detailed study that reveals a mode of action for two P. falciparum choline kinase inhibitors both in vitro and in vivo. The compounds present distinct binding modes to the choline/ethanolamine-binding site of P. falciparum choline kinase, reflecting different types of inhibition. Strikingly, these compounds primarily inhibit the ethanolamine kinase activity of the P. falciparum choline kinase, leading to a severe decrease in the phosphatidylethanolamine levels within P. falciparum, which explains the resulting growth phenotype and the parasites death. These studies provide an understanding of the mode of action, and act as a springboard for continued antimalarial development efforts selectively targeting P. falciparum choline kinase.Publisher PDFPeer reviewe

    Intermittent preventive treatment for malaria in pregnancy in Africa: What's new, what's needed?

    Get PDF
    Falciparum malaria is an important cause of maternal, perinatal and neonatal morbidity in high transmission settings in Sub-Saharan Africa. Intermittent preventive treatment with sulphadoxine-pyrimethamine (SP-IPT) has proven efficacious in reducing the burden of pregnancy-associated malaria but increasing levels of parasite resistance mean that the benefits of national SP-IPT programmes may soon be seriously undermined in much of the region. Hence, there is an urgent need to develop alternative drug regimens for IPT in pregnancy. This paper reviews published safety and efficacy data on various antimalarials and proposes several candidate combination regimens for assessment in phase II/III clinical trials
    corecore