10 research outputs found

    Technical Performance Reduces during the Extra-Time Period of Professional Soccer Match-Play

    Get PDF
    Despite the importance of extra-time in determining progression in specific soccer tournament matches, few studies have profiled the demands of 120-minutes of soccer match-play. With a specific focus on the extra-time period, and using a within-match approach, we examined the influence of prolonged durations of professional soccer match-play on markers of technical (i.e., skilled) performance. In 18 matches involving professional European teams played between 2010 and 2014, this retrospective study quantified the technical actions observed during eight 15-minute epochs (E1: 00:00–14:59 min, E2: 15:00-29:59 min, E3: 30:00-44:59 min, E4: 45:00-59:59 min, E5: 60:00-74:59 min, E6: 75:00-89:59 min, E7: 90:00-104:59 min, E8: 105:00-119:59 min). Analysis of players who completed the demands of the full 120 min of match-play revealed that the cumulative number of successful passes observed during E8 (61±23) was lower than E1-4 (E1: 88±23, P=0.001; E2: 77±21, P=0.005; E3: 79±18, P=0.001; E4: 80±21, P=0.001) and E7 (73±20, P=0.002). Similarly, the total number of passes made in E8 (71±25) was reduced when compared to E1 (102±22, P=0.001), E3 (91±19, P=0.002), E4 (93±22, P≤0.0005) and E7 (84±20, P=0.001). The cumulative number of successful dribbles reduced in E8 (9±4) when compared to E1 (14±4, P=0.001) and E3 (12±4, P≤0.0005) and the total time the ball was in play was less in E8 (504±61 s) compared to E1 (598±70 s, P≤0.0005). These results demonstrate that match-specific factors reduced particular indices of technical performance in the second half of extra-time. Interventions that seek to maintain skilled performance throughout extra-time warrant further investigation

    The Correlation between Running Economy and Maximal Oxygen Uptake: Cross-Sectional and Longitudinal Relationships in Highly Trained Distance Runners

    Get PDF
    A positive relationship between running economy and maximal oxygen uptake (V̇O2max) has been postulated in trained athletes, but previous evidence is equivocal and could have been confounded by statistical artefacts. Whether this relationship is preserved in response to running training (changes in running economy and V̇O2max) has yet to be explored. This study examined the relationships of (i) running economy and V̇O2max between runners, and (ii) the changes in running economy and V̇O2max that occur within runners in response to habitual training. 168 trained distance runners (males, n = 98, V̇O2max 73.0 ± 6.3 mLkg-1min-1; females, n = 70, V̇O2max 65.2 ± 5.9 mL kg-1min-1) performed a discontinuous submaximal running test to determine running economy (kcalkm-1). A continuous incre-mental treadmill running test to volitional exhaustion was used to determine V̇O2max 54 par-ticipants (males, n = 27; females, n = 27) also completed at least one follow up assessment. Partial correlation analysis revealed small positive relationships between running economy and V̇O2max (males r = 0.26, females r = 0.25; P<0.006), in addition to moderate positive re-lationships between the changes in running economy and V̇O2max in response to habitual training (r = 0.35; P<0.001). In conclusion, the current investigation demonstrates that only a small to moderate relationship exists between running economy and V̇O2max in highly trained distance runners. With>85 % of the variance in these parameters unexplained by this relationship, these findings reaffirm that running economy and V̇O2max are primarily determined independently

    Mechanical Energy and Propulsion in Ergometer Double Poling by Cross-country Skiers

    No full text
    Purpose This study aims to investigate fluctuations in total mechanical energy of the body (E-body) in relation to external ergometer work (W-erg) during the poling and recovery phases of simulated double-poling cross-country skiing. Methods Nine male cross-country skiers (mean SD age, 24 5 yr; mean +/- SD body mass, 81.7 +/- 6.5 kg) performed 4-min submaximal tests at low-intensity, moderate-intensity, and high-intensity levels and a 3-min all-out test on a ski ergometer. Motion capture analysis and load cell recordings were used to measure body kinematics and dynamics. From these, W-erg, E-body (sum of the translational, rotational, and gravitational potential energies of all segments), and their time differentials (power P) were calculated. P(tot)the rate of energy absorption or generation by muscles-tendonswas defined as the sum of P-body and P-erg. ResultsE(body) showed large fluctuations over the movement cycle, decreasing during poling and increasing during the recovery phase. The fluctuation in P-body was almost perfectly out of phase with P-erg. Some muscle-tendon energy absorption was observed at the onset of poling. For the rest of poling and throughout the recovery phase, muscles-tendons generated energy to do W-erg and to increase E-body. Approximately 50% of cycle P-tot occurred during recovery for all intensity levels. Conclusions In double poling, the extensive contribution of the lower extremities and trunk to whole-body muscle-tendon work during recovery facilitates a direct transfer of E-body to W-erg during the poling phase. This observation reveals that double poling involves a unique movement pattern different from most other forms of legged terrestrial locomotion, which are characterized primarily by inverted pendulum or spring-mass types of movement

    The future of health/fitness/sports performance

    Get PDF
    Exercise relative to health/fitness and sports performance has displayed an evolutionary role over time. Large scale, overriding, factors are present which are likely to help us understand the likely future evolutionary path of health/fitness and sports performance. These factors include: 1) the history of exercise, 2) exercise in its' relationship to health, 3) the need for fitness in the military and first responders, 4) the conflicted relationship between top sport (representing the apex of the human genomic capacity for exercise) versus the overly competitive and compensated nature of top sport. Dominantly, the need for exercise as preventive medicine in a progressively more sedentary society, the need to provide social integration and inclusion in a highly mobile society, the risk of undesirable social outcomes related to top sport and the likelihood of human-cyber interactions are likely to drive the evolution of exercise in the future

    How to Succeed as an Athlete:What We Know, What We Need to Know

    Get PDF
    When I (C. Foster) was in my teens, I was a runner. While any objective observer would have known that my prospects for Olympic medals or world records were low, I had “delusions of grandeur” and believed that I might find the right combination of knowledge and effort to succeed. That never happened. However, that passion and quest for success led to my professional career. For many of us, the same quest to achieve “the impossible dream” drove our professional careers (only 2 of us [A. Casado and K. Chamari] were Olympians, so we are better as scientists than athletes). This same mindset is, to some degree, the underlying rationale for IJSPP. I asked several of my friends to identify factors necessary for success. In other words, what do we know and what do we need to know? Later, in a more detailed referenced manuscript, we can treat this topic more fully

    Training During the COVID-19 Lockdown: Knowledge, Beliefs, and Practices of 12,526 Athletes from 142 Countries and Six Continents (vol 52, pg 933, 2021)

    No full text
    Washif JA, Farooq A, Krug I, et al. Training During the COVID-19 Lockdown: Knowledge, Beliefs, and Practices of 12,526 Athletes from 142 Countries and Six Continents (vol 52, pg 933, 2021). Sports Medicine . 2022;52:933-948.Objective Our objective was to explore the training-related knowledge, beliefs, and practices of athletes and the influence of lockdowns in response to the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods Athletes (n = 12,526, comprising 13% world class, 21% international, 36% national, 24% state, and 6% recreational) completed an online survey that was available from 17 May to 5 July 2020 and explored their training behaviors (training knowledge, beliefs/attitudes, and practices), including specific questions on their training intensity, frequency, and session duration before and during lockdown (March–June 2020). Results Overall, 85% of athletes wanted to “maintain training,” and 79% disagreed with the statement that it is “okay to not train during lockdown,” with a greater prevalence for both in higher-level athletes. In total, 60% of athletes considered “coaching by correspondence (remote coaching)” to be sufficient (highest amongst world-class athletes). During lockdown, < 40% were able to maintain sport-specific training (e.g., long endurance [39%], interval training [35%], weightlifting [33%], plyometric exercise [30%]) at pre-lockdown levels (higher among world-class, international, and national athletes), with most (83%) training for “general fitness and health maintenance” during lockdown. Athletes trained alone (80%) and focused on bodyweight (65%) and cardiovascular (59%) exercise/training during lockdown. Compared with before lockdown, most athletes reported reduced training frequency (from between five and seven sessions per week to four or fewer), shorter training sessions (from ≥ 60 to < 60 min), and lower sport-specific intensity (~ 38% reduction), irrespective of athlete classification. Conclusions COVID-19-related lockdowns saw marked reductions in athletic training specificity, intensity, frequency, and duration, with notable within-sample differences (by athlete classification). Higher classification athletes had the strongest desire to “maintain” training and the greatest opposition to “not training” during lockdowns. These higher classification athletes retained training specificity to a greater degree than others, probably because of preferential access to limited training resources. More higher classification athletes considered “coaching by correspondence” as sufficient than did lower classification athletes. These lockdown-mediated changes in training were not conducive to maintenance or progression of athletes’ physical capacities and were also likely detrimental to athletes’ mental health. These data can be used by policy makers, athletes, and their multidisciplinary teams to modulate their practice, with a degree of individualization, in the current and continued pandemic-related scenario. Furthermore, the data may drive training-related educational resources for athletes and their multidisciplinary teams. Such upskilling would provide athletes with evidence to inform their training modifications in response to germane situations (e.g., COVID related, injury, and illness)
    corecore