2,261 research outputs found

    A Power-Line Communication System Governed by Loop Resonance for Photovoltaic Plant Monitoring

    Get PDF
    Within this paper, a PLC system that takes advantage of the loop resonance of an entire DC-PV string configured as a circular signal path is developed and implemented. Low cost and extremely simple transceivers intended to be installed within each PV module of a string have been designed and successfully tested. In addition, an anti-saturation coil has been conceived to avoid saturation of the core when the entire DC current of the string flows through it. Bi-directional half-duplex communication was successfully executed with up to a 1 MHz carrier frequency (150 kbps bitrate), using a simple ASK modulation scheme. The transmission and reception performance are presented, along with the overall system cost in comparison to the previous literatureThis research was funded by the Universidad dee Valladolid with the predoctoral contracts of 2020 cofunded by Santander Bank. This study was also supported by the Universidad dee Valladolid with ERASMUS+ KA-107. Partial funding for open access charge: Universidad de Málag

    BRAF activation by metabolic stress promotes glycolysis sensitizing NRASQ61-mutated melanomas to targeted therapy

    Get PDF
    Glycolysis; Melanomas; Targeted therapyGlucólisis; Melanomas; Terapia dirigidaGlucòlisi; Melanomes; Teràpia dirigidaNRAS-mutated melanoma lacks a specific line of treatment. Metabolic reprogramming is considered a novel target to control cancer; however, NRAS-oncogene contribution to this cancer hallmark is mostly unknown. Here, we show that NRASQ61-mutated melanomas specific metabolic settings mediate cell sensitivity to sorafenib upon metabolic stress. Mechanistically, these cells are dependent on glucose metabolism, in which glucose deprivation promotes a switch from CRAF to BRAF signaling. This scenario contributes to cell survival and sustains glucose metabolism through BRAF-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2/3 (PFKFB2/PFKFB3). In turn, this favors the allosteric activation of phosphofructokinase-1 (PFK1), generating a feedback loop that couples glycolytic flux and the RAS signaling pathway. An in vivo treatment of NRASQ61 mutant melanomas, including patient-derived xenografts, with 2-deoxy-D-glucose (2-DG) and sorafenib effectively inhibits tumor growth. Thus, we provide evidence for NRAS-oncogene contributions to metabolic rewiring and a proof-of-principle for the treatment of NRASQ61-mutated melanoma combining metabolic stress (glycolysis inhibitors) and previously approved drugs, such as sorafenib.This work was funded by Instituto de Salud Carlos III and co-funded by European Union (ERDF/ESF, “A way to make Europe”/“Investing in your future”) PI14/0375-Fondos FEDER J.A.R., PI17/00043-Fondos FEDER; J.A.R., PI20/0384-Fondos FEDER; J.A.R., Euronanomed2-ISCIII (AC16/00019)-Fondos FEDER; J.A.R., Asociación Española Contra el Cancer (AECC-GCB15152978SOEN) (supported P.G.M., K.M.); J.A.R., Ramón Areces Foundation (supported K.M. and research); J.A.R. (PI17/00412)-Fondos FEDER; R.B., A.M., A.N.S. We thank A. Zorzano’s laboratory for technical assistance and performance of Seahorse technology

    A Resonant Ring Topology Approach to Power Line Communication Systems within Photovoltaic Plants

    Get PDF
    Within this study, single-cable propagation facilitated by PV strings’ wiring characteristics is considered for an adapted design of PLC electronics. We propose to close the communications signal path, resulting in a ring topology where a resonance condition could be implemented. A PLC topology using the resulting circular closed-loop path of a PV series string as its physical communication support is designed and leveraged for practical use. When the path length or the number of transceivers is changed, the resonance properties that come with the circular path as the physical support are affected but are shown to be preserved with the application of automatic adjustable tuning. This automatic tuning guarantees that the resonance improves propagation parameters and reverts the system to its optimal values at the chosen carrier frequency.This study was supported by the Universidad of Valladolid with the predoctoral contracts of 2020 cofunded by Santander Bank. This study was supported by the Universidad of Valladolid with ERASMUS+ KA-107. Partial funding for open access charge: Universidad de Málag

    Endoglin, a novel biomarker and therapeutical target to prevent malignant peripheral nerve sheath tumor growth and metastasis.

    Get PDF
    PURPOSE Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGF-β coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.We apologize to those authors whose work could not be cited due to size limitations. We thank Dr. Eduard Serra, Dr. Conxi Lázaro and Dr. David Lyden for their support in the project. We also thank Héctor Tejero for his help in analyzing RNA-seq data. Dr. Peinado laboratory is funded by US Department of Defense (W81XWH-16-1-0131), Agencia Estatal de Investigación/Ministerio de Ciencia e Innovación (AEI/MCIN) (PID2020-118558RB-I00/AEI/10.13039/501100011033), Fundación Proyecto Neurofibromatosis, European Union’s Horizon 2020 research and innovation programme “proEVLifeCycle” under the Marie Skłodowska-Curie grant agreement No 860303, and Fundación Científica AECC. We are also grateful for the support of the Ministerio de Universidades (Programa de Formación de Profesorado Universitario (FPU)) for the fellowship FPU016/05356 awarded to T. González-Muñoz and to the Translational NeTwork for the CLinical application of Extracellular VesicleS (TeNTaCLES) RED2018-102411-T(AEI/10.13039/501100011033). A. Di Giannatale was supported during this work by a research gran Nuovo-Soldati Foundation. The CNIO, certified as Severo Ochoa Excellence Centre, is supported by the Spanish Government through the Instituto de Salud Carlos III.N

    A power-line communication system governed by loop resonance for photovoltaic plant monitoring

    Get PDF
    Within this paper, a PLC system that takes advantage of the loop resonance of an entire DC-PV string configured as a circular signal path is developed and implemented. Low cost and extremely simple transceivers intended to be installed within each PV module of a string have been designed and successfully tested. In addition, an anti-saturation coil has been conceived to avoid saturation of the core when the entire DC current of the string flows through it. Bi-directional half-duplex communication was successfully executed with up to a 1 MHz carrier frequency (150 kbps bitrate), using a simple ASK modulation scheme. The transmission and reception performance are presented, along with the overall system cost in comparison to the previous literature.The Universidad dee Valladolid with the predoctoral contracts of 2020 co-funded by Santander Bank.https://www.mdpi.com/journal/sensorsam2023Electrical, Electronic and Computer Engineerin

    NAD+-metabolizing ecto-enzymes shape tumor–host interactions: The chronic lymphocytic leukemia model

    Get PDF
    AbstractNicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme that can be released in the extracellular milieu. Here, it may elicit signals through binding purinergic receptors. Alternatively, NAD+ may be dismantled to adenosine, up-taken by cells and transformed to reconstitute the intracellular nucleotide pool. An articulated ecto-enzyme network is responsible for the nucleotide–nucleoside conversion. CD38 is the main mammalian enzyme that hydrolyzes NAD+, generating Ca2+-active metabolites. Evidence suggests that this extracellular network may be altered or used by tumor cells to (i) nestle in protected areas, and (ii) evade the immune response. We have exploited chronic lymphocytic leukemia as a model to test the role of the ecto-enzyme network, starting by analyzing the individual elements that make up the whole picture

    Famílies botàniques de plantes medicinals

    Get PDF
    Facultat de Farmàcia, Universitat de Barcelona. Ensenyament: Grau de Farmàcia, Assignatura: Botànica Farmacèutica, Curs: 2013-2014, Coordinadors: Joan Simon, Cèsar Blanché i Maria Bosch.Els materials que aquí es presenten són els recull de 175 treballs d’una família botànica d’interès medicinal realitzats de manera individual. Els treballs han estat realitzat per la totalitat dels estudiants dels grups M-2 i M-3 de l’assignatura Botànica Farmacèutica durant els mesos d’abril i maig del curs 2013-14. Tots els treballs s’han dut a terme a través de la plataforma de GoogleDocs i han estat tutoritzats pel professor de l’assignatura i revisats i finalment co-avaluats entre els propis estudiants. L’objectiu principal de l’activitat ha estat fomentar l’aprenentatge autònom i col·laboratiu en Botànica farmacèutica

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
    corecore