2,365 research outputs found
Autophagy is required for gamete differentiation in the moss Physcomitrella patens.
Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found
that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.This work was supported by grants to ES from the Knut and Alice Wallenberg Foundation (# 2012.0087) and the Swedish Research Council (# 621–2014–4941), to MT from the Carl Trygger Foundation (12:493, 14:481), the Nilsson-Ehle Endowments and the Olle Engkvist Foundation and to JM from the Danish Research Council on Nature and the Universe (#1323–00267) and the Indo-Danish Research Program (2 research-exchange grants)
A method for automatically extracting infectious disease-related primers and probes from the literature
BACKGROUND: Primer and probe sequences are the main components of nucleic acid-based detection systems. Biologists use primers and probes for different tasks, some related to the diagnosis and prescription of infectious diseases. The biological literature is the main information source for empirically validated primer and probe sequences. Therefore, it is becoming increasingly important for researchers to navigate this important information. In this paper, we present a four-phase method for extracting and annotating primer/probe sequences from the literature. These phases are: (1) convert each document into a tree of paper sections, (2) detect the candidate sequences using a set of finite state machine-based recognizers, (3) refine problem sequences using a rule-based expert system, and (4) annotate the extracted sequences with their related organism/gene information. RESULTS: We tested our approach using a test set composed of 297 manuscripts. The extracted sequences and their organism/gene annotations were manually evaluated by a panel of molecular biologists. The results of the evaluation show that our approach is suitable for automatically extracting DNA sequences, achieving precision/recall rates of 97.98% and 95.77%, respectively. In addition, 76.66% of the detected sequences were correctly annotated with their organism name. The system also provided correct gene-related information for 46.18% of the sequences assigned a correct organism name. CONCLUSIONS: We believe that the proposed method can facilitate routine tasks for biomedical researchers using molecular methods to diagnose and prescribe different infectious diseases. In addition, the proposed method can be expanded to detect and extract other biological sequences from the literature. The extracted information can also be used to readily update available primer/probe databases or to create new databases from scratch.The present work has been funded, in part, by the European Commission through the ACGT integrated project (FP6-2005-IST-026996) and the ACTION-Grid support action (FP7-ICT-2007-2-224176), the Spanish Ministry of Science and Innovation through the OntoMineBase project (ref. TSI2006-13021-C02-01), the ImGraSec project (ref. TIN2007-61768), FIS/AES PS09/00069 and COMBIOMED-RETICS, and the Comunidad de Madrid, Spain.S
Metallofluorescent Nanoparticles for Multimodal Applications
Herein, we describe
the synthesis and application of cross-linked
polystyrene-based dual-function nano- and microparticles containing
both fluorescent tags and metals. Despite containing a single dye,
these particles exhibit a characteristic dual-band fluorescence emission.
Moreover, these particles can be combined with different metal ions
to obtain hybrid metallofluorescent particles. We demonstrate that
these particles are easily nanofected into living cells, allowing
them to be used for effective fingerprinting in multimodal fluorescence-based
and mass spectrometry-based flow cytometry experiments. Likewise,
the in situ reductions of the metal ions enable other potential uses
of the particles as heterogeneous catalysts
Nanoinformatics: developing new computing applications for nanomedicine
Nanoinformatics has recently emerged to address the need of computing applications at the nano level. In this regard, the authors have participated in various initiatives to identify its concepts, foundations and challenges. While nanomaterials open up the possibility for developing new devices in many industrial and scientific areas, they also offer breakthrough perspectives for the prevention, diagnosis and treatment of diseases. In this paper, we analyze the different aspects of nanoinformatics and suggest five research topics to help catalyze new research and development in the area, particularly focused on nanomedicine. We also encompass the use of informatics to further the biological and clinical applications of basic research in nanoscience and nanotechnology, and the related concept of an extended ?nanotype? to coalesce information related to nanoparticles. We suggest how nanoinformatics could accelerate developments in nanomedicine, similarly to what happened with the Human Genome and other -omics projects, on issues like exchanging modeling and simulation methods and tools, linking toxicity information to clinical and personal databases or developing new approaches for scientific ontologies, among many others
Targeting ribosomal G-quadruplexes with naphthalene-diimides as RNA polymerase I inhibitors for colorectal cancer treatment
17 pags., 6 figs., 2 tabs.Sanchez-Martin et al. report a mode of action for naphthalene-diimides, a well-known class of G-quadruplexes ligands.
Their work provides evidence of naphthalene-diimides targeting G-quadruplexes in ribosomal DNA, inducing
a blockade of RNA polymerase I-mediated transcription and cell death. These compounds could be exploited in
colorectal cancer treatment.This work was supported by the European Commission (TAR-
BRAINFECT to J.A.G.-S.) and the National Institutes of Health (GM084946 to
D.A.S.). The Government of Spain granted with PhD fellowships FPU16/
05822 to V.S.-M. and FPU17/05413 to A.S.-L. The University of Almeria
granted with PhD fellowship to M.O.-G. Funding for open access charge: Eu-
ropean Commissio
Critical COPD respiratory illness is linked to increased transcriptomic activity of neutrophil proteases genes
BACKGROUND: Gene expression profiling (GEP) in cells obtained from peripheral blood has shown that this is a very useful approach for biomarker discovery and for studying molecular pathogenesis of prevalent diseases. While there is limited literature available on gene expression markers associated with Chronic Obstructive Pulmonary Disease (COPD), the transcriptomic picture associated with critical respiratory illness in this disease is not known at the present moment. FINDINGS: By using Agilent microarray chips, we have profiled gene expression signatures in the whole blood of 28 COPD patients hospitalized with different degrees of respiratory compromise.12 of them needed of admission to the ICU, whilst 16 were admitted to the Respiratory Medicine Service. GeneSpring GX 11.0 software was used for performing statistical comparisons of transcript levels between ICU and non-ICU patients. Ingenuity pathway analysis 8.5 (IPA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to select, annotate and visualize genes by function and pathway (gene ontology). T-test showed evidence of 1501 genes differentially expressed between ICU and non-ICU patients. IPA and KEGG analysis of the most representative biological functions revealed that ICU patients had increased levels of neutrophil gene transcripts, being [cathepsin G (CTSG)], [elastase, neutrophil expressed (ELANE)], [proteinase 3 (PRTN3)], [myeloperoxidase (MPO)], [cathepsin D (CTSD)], [defensin, alpha 3, neutrophil-specific (DEFA3)], azurocidin 1 (AZU1)], and [bactericidal/permeability-increasing protein (BPI)] the most representative ones. Proteins codified by these genes form part of the azurophilic granules of neutrophils and are involved in both antimicrobial defence and tissue damage. This “neutrophil signature” was paralleled by the necessity of advanced respiratory and vital support, and the presence of bacterial infection. CONCLUSION: Study of transcriptomic signatures in blood suggests an essential role of neutrophil proteases in COPD patients with critical respiratory illness. Measurement and modulation of the expression of these genes could present an option for clinical monitoring and treatment of severe COPD exacerbations
The PI3K pathway impacts stem gene expression in a set of glioblastoma cell lines
Background: The PI3K pathway controls diverse cellular processes including growth, survival, metabolism, and apoptosis. Nuclear FOXO factors were observed in cancers that harbor constitutively active PI3K pathway output and stem signatures. FOXO1 and FOXO3 were previously published to induce stem genes such as OCT4 in embryonic stem cells. Here, we investigated FOXO-driven stem gene expression in U87MG glioblastoma cells.
Methods: PI3K-activated cancer cell lines were investigated for changes in gene expression, signal transduction, and clonogenicity under conditions with FOXO3 disruption or exogenous expression. The impact of PI3K pathway inhibition on stem gene expression was examined in a set of glioblastoma cell lines.
Results: We found that CRISPR-Cas9-mediated FOXO3 disruption in U87MG cells caused decreased OCT4 and SOX2 gene expression, STAT3 phosphorylation on tyrosine 705 and clonogenicity. FOXO3 over expression led to increased OCT4 in numerous glioblastoma cancer cell lines. Strikingly, treatment of glioblastoma cells with NVP-BEZ235 (a dual inhibitor of PI3K and mTOR), which activates FOXO factors, led to robust increases OCT4 gene expression. Direct FOXO factor recruitment to the OCT4 promoter was detected by chromatin immunoprecipitation analyses using U87MG extracts.
Discussion: We show for the first time that FOXO transcription factors promote stem gene expression glioblastoma cells. Treatment with PI3K inhibitor NVP-BEZ235 led to dramatic increases in stem genes in a set of glioblastoma cell lines.
Conclusion: Given that, PI3K inhibitors are actively investigated as targeted cancer therapies, the FOXO-mediated induction of stem genes observed in this study highlights a potential hazard to PI3K inhibition. Understanding the molecular underpinnings of stem signatures in cancer will allow refinements to therapeutic strategies. Targeting FOXO factors to reduce stem cell characteristics in concert with PI3K inhibition may prove therapeutically efficacious
Host adaptive immunity deficiency in severe pandemic influenza
INTRODUCTION:
Pandemic A/H1N1/2009 influenza causes severe lower respiratory complications in rare cases. The association between host immune responses and clinical outcome in severe cases is unknown.
METHODS:
We utilized gene expression, cytokine profiles and generation of antibody responses following hospitalization in 19 critically ill patients with primary pandemic A/H1N1/2009 influenza pneumonia for identifying host immune responses associated with clinical outcome. Ingenuity pathway analysis 8.5 (IPA) (Ingenuity Systems, Redwood City, CA) was used to select, annotate and visualize genes by function and pathway (gene ontology). IPA analysis identified those canonical pathways differentially expressed (P < 0.05) between comparison groups. Hierarchical clustering of those genes differentially expressed between groups by IPA analysis was performed using BRB-Array Tools v.3.8.1.
RESULTS:
The majority of patients were characterized by the presence of comorbidities and the absence of immunosuppressive conditions. pH1N1 specific antibody production was observed around day 9 from disease onset and defined an early period of innate immune response and a late period of adaptive immune response to the virus. The most severe patients (n = 12) showed persistence of viral secretion. Seven of the most severe patients died. During the late phase, the most severe patient group had impaired expression of a number of genes participating in adaptive immune responses when compared to less severe patients. These genes were involved in antigen presentation, B-cell development, T-helper cell differentiation, CD28, granzyme B signaling, apoptosis and protein ubiquitination. Patients with the poorest outcomes were characterized by proinflammatory hypercytokinemia, along with elevated levels of immunosuppressory cytokines (interleukin (IL)-10 and IL-1ra) in serum.
CONCLUSIONS:
Our findings suggest an impaired development of adaptive immunity in the most severe cases of pandemic influenza, leading to an unremitting cycle of viral replication and innate cytokine-chemokine release. Interruption of this deleterious cycle may improve disease outcome.The study was scientifically sponsored by the Spanish Society for Critical Care Medicine (SEMICYUC). Funding: MICCIN-FIS/JCYL-IECSCYL-SACYL (Spain): Programa de Investigación Comisionada en Gripe, GR09/0021-EMER07/050- PI081236-RD07/0067. CIHR-NIH-Sardinia Recherché-LKSF Canada support DJK.S
Ulmus laevis in the Iberian Peninsula: a review of its ecology and conservation
European white elm (Ulmus laevis Pallas) populations are scarce, small and fragmented in the Iberian Peninsula. Due to these characteristics the indigenous status of the species in the region has been questioned, whilst the species? role in Iberian riparian forest ecology has been neglected. Herein we review past studies regarding this species? distribution and ecology in the Iberian Peninsula, with special emphasis on the establishment of conservation priorities. We first present a collection of palaeogeographic, historic and genetic data suggesting that the Iberian Peninsula was a glacial refuge for U. laevis. Secondly, we analyse U. laevis distribution in relation to soil physico- chemical properties and water availability in Spain. Following this, we focus on the reproductive biology of the species, and investigate the effect of masting and empty seed production on predation and regeneration establishment. Finally, based on this knowledge, we propose conservation policies for U. laevis in the Iberian Peninsula
- …