1,013 research outputs found

    Not so different after all: Properties and spatial structure of column density peaks in the pipe and Orion A clouds

    Get PDF
    We present a comparative study of the physical properties and the spatial distribution of column density peaks in two giant molecular clouds (GMCs), the Pipe Nebula and Orion A, which exemplify opposite cases of star cluster formation stages. The density peaks were extracted from dust extinction maps constructed from Herschel/SPIRE far-infrared images. We compare the distribution functions for dust temperature, mass, equivalent radius, and mean volume density of peaks in both clouds, and made a more fair comparison by isolating the less active Tail region in Orion A and by convolving the Pipe Nebula map to simulate placing it at a distance similar to that of the Orion Complex. The peak mass distributions for Orion A, the Tail, and the convolved Pipe have similar ranges, sharing a maximum near 5 M and a similar power-law drop above 10 M. Despite the clearly distinct evolutive stage of the clouds, there are very important similarities in the physical and spatial distribution properties of the column density peaks, pointing to a scenario where they form as a result of uniform fragmentation of filamentary structures across the various scales of the cloud, with density being the parameter leading the fragmentation, and with clustering being a direct result of thermal fragmentation at different spatial scales. Our work strongly supports the idea that the formation of clusters in GMC could be the result of the primordial organization of pre-stellar material

    Optimizing outcomes for children with non-Hodgkin lymphoma in low- and middle-income countries by early correct diagnosis, reducing toxic death and preventing abandonment

    Get PDF
    In high-income countries, more than 90% of children with mature B-cell lymphomas are cured with frontline therapy. However, cure requires prompt and correct diagnosis, careful risk stratification, very intense chemotherapy and meticulous supportive care, together with logistical support for patients who live far from the cancer centre or face financial barriers to receiving care. In low- and middle-income countries (LMIC), cure rates range from 20% to 70% because of lack of diagnosis, misdiagnosis, abandonment of treatment, toxic death and excess relapse with reduced-intensity regimens. Fortunately, a wide range of successful interventions in LMIC have reduced these causes of avoidable treatment failure. Public awareness campaigns have led to societal awareness of childhood cancer; telepathology has improved diagnosis, even in remote areas; subsidized chemotherapy, transportation, housing and food have reduced abandonment; and hand hygiene, nurse training programmes and health system improvements have reduced toxic death. These interventions can be deployed everywhere and at low cost, so are highly scalable. Children and adolescents with Burkitt lymphoma can be cured in all countries by making a timely correct diagnosis, applying protocols adapted to the local context, preventing abandonment of therapy and avoiding toxic death. Reducing these causes of treatment failure is feasible and highly cost-effective everywhere.Fil: Chantada, Guillermo Luis. Hospital Universitario Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lam, Catherine G.. St. Jude Children's Research Hospital; Estados UnidosFil: Howard, Scott C.. University of Tennessee; Estados Unido

    Exfoliated graphite preparation based on an eco-friendly mechanochemical route

    Get PDF
    In the present study, we proposed an eco-friendly method to produce exfoliated graphite based on a dry mechanochemical process. This route represents an alternative that avoids the use and disposal problems related to highly corrosive and dangerous reagents use, manipulation and elimination. As non-toxic alternative exfoliation route, an equimolar mixture of graphite flakes and calcium carbonate was milled and leached with an aqueous solution of acetic acid (vinegar). There was a notable reduction of the graphite particle size with a significantly increased level of exfoliation, which dramatically improved the surface area of the prepared samples from 4 to 363 m2 g-1. After 16 h of processing, milled particles reached a thickness reduction of up to 5 nm and micrometric widths.The overall yield of processed graphite is around 92% based on the raw graphite. The evident benefits of the obtained exfoliated graphites in the adsorption of methylene blue (a common pollutant of textile wastewater) are presented. Exfoliated graphite represents a valid alternative as adsorption agent for dye removal reaching efficiencies above 95% after 30 min of testing with an aqueous solution of methylene blue. Contrary, the untreated graphite sample showed a null adsorption activity

    Singularity free dilaton-driven cosmologies and pre-little-bang

    Get PDF
    There are no reasons why the singularity in the growth of the dilaton coupling should not be regularised, in a string cosmological context, by the presence of classical inhomogeneities. We discuss a class of inhomogeneous dilaton-driven models whose curvature invariants are all bounded and regular in time and space. We prove that the non-space-like geodesics of these models are all complete in the sense that none of them reaches infinity for a finite value of the affine parameter. We conclude that our examples represent truly singularity-free solutions of the low energy beta functions. We discuss some symmetries of the obtained solutions and we clarify their physical interpretation. We also give examples of solutions with spherical symmetry. In our scenario each physical quantity is everywhere defined in time and space, the big-bang singularity is replaced by a maximal curvature phase where the dilaton kinetic energy reaches its maximum. The maximal curvature is always smaller than one (in string units) and the coupling constant is also smaller than one and it grows between two regimes of constant dilaton, implying, together with the symmetries of the solutions, that higher genus and higher curvature corrections are negligible. We argue that our examples describe, in a string cosmological context, the occurrence of ``little bangs''(i.e. high curvature phases which never develop physical singularities). They also suggest the possibility of an unexplored ``pre-little-bang'' phase.Comment: 25 pages in LaTex style, 3 encapsulated figure

    Restoration of supersymmetric Slavnov-Taylor and Ward identities in presence of soft and spontaneous symmetry breaking

    Full text link
    Supersymmetric Slavnov-Taylor and Ward identities are investigated in presence of soft and spontaneous symmetry breaking. We consider an abelian model where soft supersymmetry breaking yields a mass splitting between electron and selectron and triggers spontaneous symmetry breaking, and we derive corresponding identities that relate the electron and selectron masses with the Yukawa coupling. We demonstrate that the identities are valid in dimensional reduction and invalid in dimensional regularization and compute the necessary symmetry-restoring counterterms.Comment: 35 pages, LaTeX, 9 postscript figure

    Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time

    Full text link
    We present a model for structure formation, melting, and optical properties of gold/DNA nanocomposites. These composites consist of a collection of gold nanoparticles (of radius 50 nm or less) which are bound together by links made up of DNA strands. In our structural model, the nanocomposite forms from a series of Monte Carlo steps, each involving reaction-limited cluster-cluster aggregation (RLCA) followed by dehybridization of the DNA links. These links form with a probability peffp_{eff} which depends on temperature and particle radius aa. The final structure depends on the number of monomers (i. e. gold nanoparticles) NmN_m, TT, and the relaxation time. At low temperature, the model results in an RLCA cluster. But after a long enough relaxation time, the nanocomposite reduces to a compact, non-fractal cluster. We calculate the optical properties of the resulting aggregates using the Discrete Dipole Approximation. Despite the restructuring, the melting transition (as seen in the extinction coefficient at wavelength 520 nm) remains sharp, and the melting temperature TMT_M increases with increasing aa as found in our previous percolation model. However, restructuring increases the corresponding link fraction at melting to a value well above the percolation threshold. Our calculated extinction cross section agrees qualitatively with experiments on gold/DNA composites. It also shows a characteristic ``rebound effect,'' resulting from incomplete relaxation, which has also been seen in some experiments. We discuss briefly how our results relate to a possible sol-gel transition in these aggregates.Comment: 12 pages, 10 figure

    Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes

    Full text link
    We review, compare and extend recent studies searching for evidence for a preferred cosmological axis. We start from the Union2 SnIa dataset and use the hemisphere comparison method to search for a preferred axis in the data. We find that the hemisphere of maximum accelerating expansion rate is in the direction (l,b)=(3093+23,1810+11)(l,b)=({309^\circ}^{+23^\circ}_{-3^\circ}, {18^\circ}^{+11^\circ}_{-10^\circ}) (\omm=0.19) while the hemisphere of minimum acceleration is in the opposite direction (l,b)=(1293+23,1811+10)(l,b)=({129^\circ}^{+23^\circ}_{-3^\circ},{-18^\circ}^{+10^\circ}_{-11^\circ}) (\omm=0.30). The level of anisotropy is described by the normalized difference of the best fit values of \omm between the two hemispheres in the context of \lcdm fits. We find a maximum anisotropy level in the Union2 data of \frac{\Delta \ommax}{\bomm}=0.43\pm 0.06. Such a level does not necessarily correspond to statistically significant anisotropy because it is reproduced by about 3030% of simulated isotropic data mimicking the best fit Union2 dataset. However, when combined with the axes directions of other cosmological observations (bulk velocity flow axis, three axes of CMB low multipole moments and quasar optical polarization alignment axis), the statistical evidence for a cosmological anisotropy increases dramatically. We estimate the probability that the above independent six axes directions would be so close in the sky to be less than 11%. Thus either the relative coincidence of these six axes is a very large statistical fluctuation or there is an underlying physical or systematic reason that leads to their correlation.Comment: 10 pages, 7 figures. Accepted in JCAP (to appear). Extended analysis with redshift tomography of SnIa, included errorbars and increased number of axes. The Mathematica 7 files with the data used for the production of the figures along with a Powerpoint file with additional figures may be downloaded from http://leandros.physics.uoi.gr/anisotrop

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Measurement of W Polarisation at LEP

    Get PDF
    The three different helicity states of W bosons produced in the reaction e+ e- -> W+ W- -> l nu q q~ at LEP are studied using leptonic and hadronic W decays. Data at centre-of-mass energies \sqrt s = 183-209 GeV are used to measure the polarisation of W bosons, and its dependence on the W boson production angle. The fraction of longitudinally polarised W bosons is measured to be 0.218 \pm 0.027 \pm 0.016 where the first uncertainty is statistical and the second systematic, in agreement with the Standard Model expectation

    Search for Anomalous Couplings in the Higgs Sector at LEP

    Get PDF
    Anomalous couplings of the Higgs boson are searched for through the processes e^+ e^- -> H gamma, e^+ e^- -> e^+ e^- H and e^+ e^- -> HZ. The mass range 70 GeV < m_H < 190 GeV is explored using 602 pb^-1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies sqrt(s)=189-209 GeV. The Higgs decay channels H -> ffbar, H -> gamma gamma, H -> Z\gamma and H -> WW^(*) are considered and no evidence is found for anomalous Higgs production or decay. Limits on the anomalous couplings d, db, Delta(g1z), Delta(kappa_gamma) and xi^2 are derived as well as limits on the H -> gamma gamma and H -> Z gamma decay rates
    corecore