701 research outputs found

    Deterioration of Macadam Roads and the Probable Cure

    Get PDF
    n/

    Characterisation of the Temperature-dependent Dark Rate of Hamamatsu R7081-100 10" Photomultiplier Tubes

    Get PDF
    Dark noise is a dominant background in photomultiplier tubes (PMTs), which are commonly used in liquid-filled particle detectors for single-photon detection to see the results of particle interactions. A major contribution to dark noise is thermionic emission from the photocathode. The dark noise of Hamamatsu R7081-100 PMTs is characterised in a temperature and purity controlled water tank, with the thermionic emission contribution isolated. The results suggest that the intrinsic dark rate of PMTs does not depend on the medium, but does follow Richardson's law of thermionic emission. There are external contributions to the overall observed PMT count rate identified, but the intrinsic PMT dark rate in water matches that measured in air.Comment: 11 pages, 7 figures, 2 tables, prepared for submission to J. Instru

    Nanostructured potential well/barrier engineering for realizing unprecedentedly large thermoelectric power factors

    Get PDF
    This work describes, through the semi-classical Boltzmann transport theory and simulation, a novel nanostructured material design that can lead to unprecedentedly high thermoelectric power factors, with improvements of more than an order of magnitude compared to optimal bulk material power factors. The design is based on a specific grain/grain-boundary (potential well/barrier) engineering such that: i) carrier energy filtering is achieved using potential barriers, combined with ii) higher than usual doping operating conditions such that high carrier velocities and mean-free-paths are utilized, iii) minimal carrier energy relaxation is achieved after passing over the barriers to propagate the high Seebeck coefficient of the barriers into the potential wells, and, importantly, iv) an intermediate dopant-free (depleted) region is formed. Thus, the design consists of a ‘three-region geometry’, in which the high doping resides in the center/core of the potential well, with a dopant-depleted region separating the doped region from the potential barriers. It is shown that the filtering barriers are optimal when they mitigate the reduction in conductivity they introduce, and this can be done primarily when they are ‘clean’ from dopants during the process of filtering. The potential wells, on the other hand, are optimal when they mitigate the reduced Seebeck coefficient they introduce by: i) not allowing carrier energy relaxation, and ii) mitigating the reduction in mobility that the high concentration of dopant impurities causes. It is shown that dopant segregation, with ‘clean’ dopant-depletion regions around the potential barriers, serves this key purpose of improved mobility toward the phonon-limited mobility levels in the wells. Using quantum transport simulations based on the non-equilibrium Green's function method as well as semi-classical Monte Carlo simulations, we also verify the important ingredients and validate this ‘clean-filtering’ design

    Mass-Producible 2D-MoS2‑Impregnated Screen-Printed Electrodes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsami.7b05104Two-dimensional molybdenum disulfide (2D-MoS2) screen-printed electrodes (2D-MoS2-SPEs) have been designed, fabricated, and evaluated toward the electrochemical oxygen reduction reaction (ORR) within acidic aqueous media. A screen-printable ink has been developed that allows for the tailoring of the 2D-MoS2 content/mass used in the fabrication of the 2D-MoS2-SPEs, which critically affects the observed ORR performance. In comparison to the graphite SPEs (G-SPEs), the 2D-MoS2-SPEs are shown to exhibit an electrocatalytic behavior toward the ORR which is found, critically, to be reliant upon the percentage mass incorporation of 2D-MoS2 in the 2D-MoS2-SPEs; a greater percentage mass of 2D-MoS2 incorporated into the 2D-MoS2-SPEs results in a significantly less electronegative ORR onset potential and a greater signal output (current density). Using optimally fabricated 2D-MoS2-SPEs, an ORR onset and a peak current of approximately +0.16 V [vs saturated calomel electrode (SCE)] and −1.62 mA cm–2, respectively, are observed, which exceeds the −0.53 V (vs SCE) and −635 μA cm–2 performance of unmodified G-SPEs, indicating an electrocatalytic response toward the ORR utilizing the 2D-MoS2-SPEs. An investigation of the underlying electrochemical reaction mechanism of the ORR within acidic aqueous solutions reveals that the reaction proceeds via a direct four-electron process for all of the 2D-MoS2-SPE variants studied herein, where oxygen is electrochemically favorably reduced to water. The fabricated 2D-MoS2-SPEs are found to exhibit no degradation in the observed achievable current over the course of 1000 repeat scans. The production of such inks and the resultant mass-producible 2D-MoS2-SPEs mitigates the need to modify post hoc an electrode via the drop-casting technique that has been previously shown to result in a loss of achievable current over the course of 1000 repeat scans. The 2D-MoS2-SPEs designed, fabricated, and tested herein could have commercial viability as electrocatalytic fuel cell electrodes because of being economical as a result of their scales of economy and inherent tailorability. The technique utilized herein to produce the 2D-MoS2-SPEs could be adapted for the incorporation of different 2D nanomaterials, resulting in SPEs with the inherent advantages identified above

    Electrospun amplified fiber optics

    Full text link
    A lot of research is focused on all-optical signal processing, aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for an efficient signal transmission. However, the complex fabrication methods, involving high-temperature processes performed in highly pure environment, slow down the fabrication and make amplified components expensive with respect to an ideal, high-throughput and room temperature production. Here, we report on near infrared polymer fiber amplifiers, working over a band of about 20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and show amplified spontaneous emission with good gain coefficients as well as low optical losses (a few cm^-1). The amplification process is favoured by the high fiber quality and low self-absorption. The found performance metrics promise to be suitable for short-distance operation, and the large variety of commercially-available doping dyes might allow for effective multi-wavelength operation by electrospun amplified fiber optics.Comment: 27 pages, 8 figure

    Wearable Activity Tracker Use Among Australian Adolescents: Usability and Acceptability Study

    Get PDF
    Background: Wearable activity trackers have the potential to be integrated into physical activity interventions, yet little is known about how adolescents use these devices or perceive their acceptability.Objective: The aim of this study was to examine the usability and acceptability of a wearable activity tracker among adolescents. A secondary aim was to determine adolescents’ awareness and use of the different functions and features in the wearable activity tracker and accompanying app.Methods: Sixty adolescents (aged 13-14 years) in year 8 from 3 secondary schools in Melbourne, Australia, were provided with a wrist-worn Fitbit Flex and accompanying app, and were asked to use it for 6 weeks. Demographic data (age, sex) were collected via a Web-based survey completed during week 1 of the study. At the conclusion of the 6-week period, all adolescents participated in focus groups that explored their perceptions of the usability and acceptability of the Fitbit Flex, accompanying app, and Web-based Fitbit profile. Qualitative data were analyzed using pen profiles, which were constructed from verbatim transcripts.Results: Adolescents typically found the Fitbit Flex easy to use for activity tracking, though greater difficulties were reported for monitoring sleep. The Fitbit Flex was perceived to be useful for tracking daily activities, and adolescents used a range of features and functions available through the device and the app. Barriers to use included the comfort and design of the Fitbit Flex, a lack of specific feedback about activity levels, and the inability to wear the wearable activity tracker for water-based sports.Conclusions: Adolescents reported that the Fitbit Flex was easy to use and that it was a useful tool for tracking daily activities. A number of functions and features were used, including the device’s visual display to track and self-monitor activity, goal-setting in the accompanying app, and undertaking challenges against friends. However, several barriers to use were identified, which may impact on sustained use over time. Overall, wearable activity trackers have the potential to be integrated into physical activity interventions targeted at adolescents, but both the functionality and wearability of the monitor should be considered

    A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)

    Get PDF
    We present a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of 29.7 fb1{\rm fb}^{-1} recorded at the Υ(4S)\Upsilon(4S) resonance and 3.9 fb1{\rm fb}^{-1} off-resonance. One of the neutral B mesons, which are produced in pairs at the Υ(4S)\Upsilon(4S), is fully reconstructed in the CP decay modes J/ψKS0J/\psi K^0_S, ψ(2S)KS0\psi(2S) K^0_S, χc1KS0\chi_{c1} K^0_S, J/ψK0J/\psi K^{*0} (K0KS0π0K^{*0}\to K^0_S\pi^0) and J/ψKL0J/\psi K^0_L, or in flavor-eigenstate modes involving D()π/ρ/a1D^{(*)}\pi/\rho/a_1 and J/ψK0J/\psi K^{*0} (K0K+πK^{*0}\to K^+\pi^-). The flavor of the other neutral B meson is tagged at the time of its decay, mainly with the charge of identified leptons and kaons. The proper time elapsed between the decays is determined by measuring the distance between the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample finds Δmd=0.516±0.016(stat)±0.010(syst)ps1\Delta m_d = 0.516\pm 0.016 {\rm (stat)} \pm 0.010 {\rm (syst)} {\rm ps}^{-1}. The value of the asymmetry amplitude sin2β\sin2\beta is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor-eigenstate sample and about 642 tagged B0B^0 decays in the CP-eigenstate modes. We find sin2β=0.59±0.14(stat)±0.05(syst)\sin2\beta=0.59\pm 0.14 {\rm (stat)} \pm 0.05 {\rm (syst)}, demonstrating that CP violation exists in the neutral B meson system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
    corecore