62 research outputs found

    Single-single gravitational-wave captures in globular clusters: Eccentric deci-Hertz sources observable by DECIGO and Tian-Qin

    Full text link
    We study the formation rate of binary black hole mergers formed through gravitational-wave emission between unbound, single black holes in globular clusters. While the formation of these binaries in very dense systems such as galactic nuclei has been well studied, we show here that this process can operate in lower-density stellar systems as well, forming binaries at a rate similar to other proposed pathways for creating eccentric mergers. Recent advances in post-Newtonian cluster dynamics indicate that a large fraction of dynamically-assembled binary black holes merge inside their host clusters during weak and strong binary-single and binary-binary interactions, and that these systems may retain measurable eccentricities as they travel through the LIGO and LISA sensitivity bands. Using an analytic approach to modeling binary black holes from globular clusters, we show that the formation of merging binaries from previously unbound black holes can operate at a similar rate to mergers forming during strong binary encounters, and that these binaries inhabit a unique region of the gravitational-wave frequency space which can be identified by proposed deci-Hertz space-based detectors.Comment: 16 pages, 5 figures. Accepted version (PRD

    On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening

    Full text link
    We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucleus with spherical and disk components hosting a super-massive black hole (SMBH). We determine the total number of encounters NGWN_{\rm GW} needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disk components. Using a Monte Carlo approach, we refine our calculations for NGWN_{\rm GW} to include gravitational wave emission between scattering events. For astrophysically plausible models we find that typically NGWN_{\rm GW} \lesssim 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low velocity dispersions and no significant Keplerian component; and (2) migration traps in disks around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disk. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because disks enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Stimulation of shrimp (Penaeus monodon) hemocytes by lipopolysaccharide-like molecules derived from Novacq™

    Get PDF
    Immune stimulation through feed additives is a promising strategy that can help to combat disease in shrimp farming and reduce the use of antibiotics and other chemotherapeutics. The present study investigated the in vitro immunostimulatory effects of lipopolysaccharide (LPS)-like molecules isolated from the microbial based feed additive Novacq™ (N-LPS). The presence of LPS-like molecules was confirmed and quantified Novacq™ using a HEK-TLR4 reporter cell line. Primary hemocytes isolated from adult Penaeus monodon were used to measure the immunostimulatory of N-LPS compared with the control group that were treated with E. coli derived LPS (E-LPS). The N-LPS stimulated a rapid and significant induction of the phenoloxidase (PO) response in the hemocytes. The PO response increased with exposure time and LPS concentration and was significantly higher compared with an E. coli LPS (E-LPS) control. In addition, using gene expression data, we quantified the transcriptome response of the hemocytes at 15, 30 and 60 mins post stimulation. Compared with the controls, the N-LPS treated hemocytes had a significant up-regulation of genes involved in the immune system modulation and control at all time-points. Most noteworthy was the significant induction of transcripts that function as serine protease inhibitors (namely SERPINs), that regulate the overexpression of the PO system. Transcription factors from the Notch family which directly regulate the expression of many immune genes were also induced within the hemocytes. Additionally, we also saw a strong up-regulation of crustacean hyperglycemic hormone (CHH) transcripts, an important neuropeptide involved in immune function. Overall, the transcriptome profile of the hemocytes suggests that the LPS component of Novacq™ is highly immunostimulatory and generates a strong PO response in vitro. The subsequent transcriptional response appears to be directed towards preventing further activation of the PO system most likely in an attempt to limit cytoxicity to the host. Our study highlights the immunostimulatory ability of Novacq™ and provides further evidence of the positive health benefits this microbial based feed additive can have in shrimp.</p

    Reducing Zero-point Systematics in Dark Energy Supernova Experiments

    Get PDF
    We study the effect of filter zero-point uncertainties on future supernova dark energy missions. Fitting for calibration parameters using simultaneous analysis of all Type Ia supernova standard candles achieves a significant improvement over more traditional fit methods. This conclusion is robust under diverse experimental configurations (number of observed supernovae, maximum survey redshift, inclusion of additional systematics). This approach to supernova fitting considerably eases otherwise stringent mission calibration requirements. As an example we simulate a space-based mission based on the proposed JDEM satellite; however the method and conclusions are general and valid for any future supernova dark energy mission, ground or space-based.Comment: 30 pages,8 figures, 5 table, one reference added, submitted to Astroparticle Physic

    Applying genetic technologies to combat infectious diseases in aquaculture

    Get PDF
    Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies—sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/ parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.publishedVersio

    A MODEST review

    Get PDF
    We present an account of the state of the art in the fields explored by the research community invested in 'Modeling and Observing DEnse STellar systems'. For this purpose, we take as a basis the activities of the MODEST-17 conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade, many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and Cosmology'. We are much grateful to the organisers of the MODEST-17 conference (Charles University, Prague, September 2017). We acknowledge the input provided by all MODEST-17 participants, and, more generally, by the members of the MODEST communit
    corecore