113 research outputs found

    Structural comparison of the free and DNA-bound forms of the purine repressor DNA-binding domain

    Get PDF
    AbstractBackground: The purine repressor (PurR) regulates genes that encode enzymes for purine biosynthesis. PurR has a two domain structure with an N-terminal DNA-binding domain (DBD) and a C-terminal corepressor-binding domain (CBD). The three-dimensional structure of a ternary complex of PurR bound to both corepressor and a specific DNA sequence has recently been determined by X-ray crystallography.Results We have determined the solution structure of the PurR DBD by NMR. It contains three helices, with the first and second helices forming a helix-turn-helix motif. The tertiary structure of the three helices is very similar to that of the corresponding region in the ternary complex. The structure of the hinge helical region, however, which makes specific base contacts in the minor groove of DNA, is disordered in the DNA-free form.Conclusion The stable formation of PurR hinge helices requires PurR dimerization, which brings the hinge regions proximal to each other. The dimerization of the hinge helices is likely to be controled by the CBD dimerization interface, but is induced by specific-DNA binding

    Anthropometry and body composition in ethnic Japanese and Caucasian adolescent girls: Considerations on ethnicity and menarche

    Get PDF
    Objective: This study aimed to compare the various anthropometric and body composition parameters based on the ethnicity and the absence or presence of menarche.Design: A cross-sectional study with incomplete sampling, using the subject as the evaluation unit.Subjects: the final sample of 550 subjects was composed of 122 Japanese and 179 Caucasian premenarcheal adolescents, and 72 Japanese and 177 Caucasian postmenarcheal adolescents.Methods: the variables of body composition were measured through the following methods: bioelectrical impedance analysis, near-infrared interactance (NIR), Slaughter cutaneous skinfold equations and body mass index. Weight, height and sitting height were also evaluated.Results: the Japanese pre- and postmenarcheal girls presented lower weight and height values when compared with the Caucasian girls. in general, the Japanese premenarcheal girls presented less fat and fat-free mass than the premenarcheal Caucasian girls. This fact was demonstrated through NIR results. Conversely, the Japanese postmenarcheal adolescents accumulated more fat than their Caucasian counterparts. However, significant differences were solely encountered in the values of cutaneous skinfold percent body fat. With regard to menarche, it was verified that, regardless of ethnicity, all the anthropometric and body composition variables reached higher values among postmenarcheal adolescents when compared with premenarcheal adolescents.Conclusion: Different results of weight and height between the ethnic groups may bring back the discussion concerning separate growth curves for different ethnic groups. the results of the body composition analysis indicated high adiposity levels among postmenarcheal adolescents.Universidade Federal de São Paulo, Escola Paulista Med, Dept Postgrad Nutr, BR-04020060 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Prevent Med, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Postgrad Nutr, BR-04020060 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Prevent Med, São Paulo, BrazilWeb of Scienc

    A Large Hadron Electron Collider at CERN

    Full text link
    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb1^{-1}. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC

    A systematic autopsy survey of human infant bridging veins

    Get PDF
    In the first years of life, subdural haemorrhage (SDH) within the cranial cavity can occur through accidental and non-accidental mechanisms as well as from birth-related injury. This type of bleeding is the most common finding in victims of abusive head trauma (AHT). Historically, the most frequent cause of SDHs in infancy is suggested to be traumatic damage to bridging veins traversing from the brain to the dural membrane. However, several alternative hypotheses have been suggested for the cause and origin of subdural bleeding. It has also been suggested by some that bridging veins are too large to rupture through the forces associated with AHT. To date, there have been no systematic anatomical studies on infant bridging veins. During 43 neonatal, infant and young child post-mortem examinations, we have mapped the locations and numbers of bridging veins onto a 3D model of the surface of a representative infant brain. We have also recorded the in situ diameter of 79 bridging veins from two neonatal, one infant and two young children at post-mortem examination. Large numbers of veins, both distant from and directly entering the dural venous sinuses, were discovered travelling between the brain and dural membrane, with the mean number of veins per brain being 54.1 and the largest number recorded as 94. The mean diameter of the bridging veins was 0.93 mm, with measurements ranging from 0.05 to 3.07 mm. These data demonstrate that some veins are extremely small and subjectively, and they appear to be delicate. Characterisation of infant bridging veins will contribute to the current understanding of potential vascular sources of subdural bleeding and could also be used to further develop computational models of infant head injury

    The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation

    Get PDF
    Horizontal gene transfer shapes the genomes of prokaryotes by allowing rapid acquisition of novel adaptive functions. Conjugation allows the broadest range and the highest gene transfer input per transfer event. While conjugative plasmids have been studied for decades, the number and diversity of integrative conjugative elements (ICE) in prokaryotes remained unknown. We defined a large set of protein profiles of the conjugation machinery to scan over 1,000 genomes of prokaryotes. We found 682 putative conjugative systems among all major phylogenetic clades and showed that ICEs are the most abundant conjugative elements in prokaryotes. Nearly half of the genomes contain a type IV secretion system (T4SS), with larger genomes encoding more conjugative systems. Surprisingly, almost half of the chromosomal T4SS lack co-localized relaxases and, consequently, might be devoted to protein transport instead of conjugation. This class of elements is preponderant among small genomes, is less commonly associated with integrases, and is rarer in plasmids. ICEs and conjugative plasmids in proteobacteria have different preferences for each type of T4SS, but all types exist in both chromosomes and plasmids. Mobilizable elements outnumber self-conjugative elements in both ICEs and plasmids, which suggests an extensive use of T4SS in trans. Our evolutionary analysis indicates that switch of plasmids to and from ICEs were frequent and that extant elements began to differentiate only relatively recently. According to the present results, ICEs are the most abundant conjugative elements in practically all prokaryotic clades and might be far more frequently domesticated into non-conjugative protein transport systems than previously thought. While conjugative plasmids and ICEs have different means of genomic stabilization, their mechanisms of mobility by conjugation show strikingly conserved patterns, arguing for a unitary view of conjugation in shaping the genomes of prokaryotes by horizontal gene transfer
    corecore