136 research outputs found

    Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae

    Get PDF
    Expansions of trinucleotide repeats cause at least 15 heritable human diseases. Single-stranded triplet repeat DNA in vitro forms stable hairpins in a sequence-dependent manner that correlates with expansion risk in vivo. Hairpins are therefore considered likely intermediates during the expansion process. Unwinding of a hairpin by a DNA helicase would help protect against expansions. Yeast Srs2, but not the RecQ homolog Sgs1, blocks expansions in vivo in a manner largely dependent on its helicase function. The current study tested the idea that Srs2 would be faster at unwinding DNA substrates with an extrahelical triplet repeat hairpin embedded in a duplex context. These substrates should mimic the relevant intermediate structure thought to occur in vivo. Srs2 was faster than Sgs1 at unwinding several substrates containing triplet repeat hairpins or another structured loop. In contrast, control substrates with an unstructured loop or a Watson–Crick duplex were unwound equally well by both enzymes. Results with a fluorescently labeled, three-way junction showed that Srs2 unwinding proceeds unabated through extrahelical triplet repeats. In summary, Srs2 maintains its facile unwinding of triplet repeat hairpins embedded within duplex DNA, supporting the genetic evidence that Srs2 is a key helicase in Saccharomyces cerevisiae for preventing expansions

    Replication fork regression in repetitive DNAs

    Get PDF
    Among several different types of repetitive sequences found in the human genome, this study has examined the telomeric repeat, necessary for the protection of chromosome termini, and the disease-associated triplet repeat (CTG)·(CAG)(n). Evidence suggests that replication of both types of repeats is problematic and that a contributing factor is the repetitive nature of the DNA itself. Here we have used electron microscopy to investigate DNA structures formed at replication forks on large model DNAs containing these repeat sequences, in an attempt to elucidate the contributory effect that these repetitive DNAs may have on their replication. Visualization of the DNA revealed that there is a high propensity for a paused replication fork to spontaneously regress when moving through repetitive DNAs, and that this results in a four-way chickenfoot intermediate that could present a significant block to replication in vivo, possibly leading to unwanted recombination events, amplifications or deletions

    The role of DNA damage response pathways in chromosome fragility in Fragile X syndrome

    Get PDF
    FRAXA is one of a number of fragile sites in human chromosomes that are induced by agents like fluorodeoxyuridine (FdU) that affect intracellular thymidylate levels. FRAXA coincides with a >200 CGG•CCG repeat tract in the 5′ UTR of the FMR1 gene, and alleles prone to fragility are associated with Fragile X (FX) syndrome, one of the leading genetic causes of intellectual disability. Using siRNA depletion, we show that ATR is involved in protecting the genome against FdU-induced chromosome fragility. We also show that FdU increases the number of γ-H2AX foci seen in both normal and patient cells and increases the frequency with which the FMR1 gene colocalizes with these foci in patient cells. In the presence of FdU and KU55933, an ATM inhibitor, the incidence of chromosome fragility is reduced, suggesting that ATM contributes to FdU-induced chromosome fragility. Since both ATR and ATM are involved in preventing aphidicolin-sensitive fragile sites, our data suggest that the lesions responsible for aphidicolin-induced and FdU-induced fragile sites differ. FRAXA also displays a second form of chromosome fragility in absence of FdU, which our data suggest is normally prevented by an ATM-dependent process

    Secondary structure formation and DNA instability at fragile site FRA16B

    Get PDF
    Human chromosomal fragile sites are specific loci that are especially susceptible to DNA breakage following conditions of partial replication stress. They often are found in genes involved in tumorigenesis and map to over half of all known cancer-specific recurrent translocation breakpoints. While their molecular basis remains elusive, most fragile DNAs contain AT-rich flexibility islands predicted to form stable secondary structures. To understand the mechanism of fragile site instability, we examined the contribution of secondary structure formation to breakage at FRA16B. Here, we show that FRA16B forms an alternative DNA structure in vitro. During replication in human cells, FRA16B exhibited reduced replication efficiency and expansions and deletions, depending on replication orientation and distance from the origin. Furthermore, the examination of a FRA16B replication fork template demonstrated that the majority of the constructs contained DNA polymerase paused within the FRA16B sequence, and among the molecules, which completed DNA synthesis, 81% of them underwent fork reversal. These results strongly suggest that the secondary-structure-forming ability of FRA16B contributes to its fragility by stalling DNA replication, and this mechanism may be shared among other fragile DNAs

    The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome

    Get PDF
    Although a variety of possible functions have been proposed for inverted repeat sequences (IRs), it is not known which of them might occur in vivo. We investigate this question by assessing the distributions and properties of IRs in the Saccharomyces cerevisiae (SC) genome. Using the IRFinder algorithm we detect 100,514 IRs having copy length greater than 6 bp and spacer length less than 77 bp. To assess statistical significance we also determine the IR distributions in two types of randomization of the S. cerevisiae genome. We find that the S. cerevisiae genome is significantly enriched in IRs relative to random. The S. cerevisiae IRs are significantly longer and contain fewer imperfections than those from the randomized genomes, suggesting that processes to lengthen and/or correct errors in IRs may be operative in vivo. The S. cerevisiae IRs are highly clustered in intergenic regions, while their occurrence in coding sequences is consistent with random. Clustering is stronger in the 3′ flanks of genes than in their 5′ flanks. However, the S. cerevisiae genome is not enriched in those IRs that would extrude cruciforms, suggesting that this is not a common event. Various explanations for these results are considered

    DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells

    Get PDF
    Human chromosomal fragile sites are regions of the genome that are prone to DNA breakage, and are classified as common or rare, depending on their frequency in the population. Common fragile sites frequently coincide with the location of genes involved in carcinogenic chromosomal translocations, suggesting their role in cancer formation. However, there has been no direct evidence linking breakage at fragile sites to the formation of a cancer-specific translocation. Here, we studied the involvement of fragile sites in the formation of RET/PTC rearrangements, which are frequently found in papillary thyroid carcinoma (PTC). These rearrangements are commonly associated with radiation exposure; however, most of the tumors found in adults are not linked to radiation. In this study, we provide structural and biochemical evidence that the RET, CCDC6 and NCOA4 genes participating in two major types of RET/PTC rearrangements, are located in common fragile sites FRA10C and FRA10G, and undergo DNA breakage after exposure to fragile site-inducing chemicals. Moreover, exposure of human thyroid cells to these chemicals results in the formation of cancer-specific RET/PTC rearrangements. These results provide the direct evidence for the involvement of chromosomal fragile sites in the generation of cancer-specific rearrangements in human cell
    corecore