
ORIGINAL ARTICLE

DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements

in human thyroid cells
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Human chromosomal fragile sites are regions of the
genome that are prone to DNA breakage, and are
classified as common or rare, depending on their frequency
in the population. Common fragile sites frequently
coincide with the location of genes involved in carcino-
genic chromosomal translocations, suggesting their role in
cancer formation. However, there has been no direct
evidence linking breakage at fragile sites to the formation
of a cancer-specific translocation. Here, we studied the
involvement of fragile sites in the formation of RET/PTC
rearrangements, which are frequently found in papillary
thyroid carcinoma (PTC). These rearrangements are
commonly associated with radiation exposure; however,
most of the tumors found in adults are not linked to
radiation. In this study, we provide structural and
biochemical evidence that the RET, CCDC6 and NCOA4
genes participating in two major types of RET/PTC
rearrangements, are located in common fragile sites
FRA10C and FRA10G, and undergo DNA breakage
after exposure to fragile site-inducing chemicals. More-
over, exposure of human thyroid cells to these chemicals
results in the formation of cancer-specific RET/PTC
rearrangements. These results provide the direct evidence
for the involvement of chromosomal fragile sites in the
generation of cancer-specific rearrangements in human cells.
Oncogene (2010) 29, 2272–2280; doi:10.1038/onc.2009.502;
published online 25 January 2010
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Introduction

Cancer development can be initiated by the accumula-
tion of various genetic abnormalities that lead to the
disregulation of genes involved in various cellular
processes. Chromosomal translocations are one of such

abnormalities commonly seen in cancer cells. Transloca-
tions result in the rearrangement of genetic material,
which typically leads to the expression of an oncogenic
fusion protein contributing to the neoplastic process
(Gasparini et al., 2007). To date, there are a total of 705
known recurrent translocations in cancer that involve
459 different gene pairs, and are present in many
different types of cancer (Mitelman et al., 2008).

In all translocations, the development of breaks in
DNA strands must occur. There are various ways in
which a cell can acquire these breaks, such as ionizing
radiation (Weterings and Chen, 2008). DNA breaks are
commonly repaired by two pathways, homologous
recombination or non-homologous end joining
(Shrivastav et al., 2008), but dysfunction of these
pathways can contribute to the formation of chromo-
somal translocations (Gasparini et al., 2007). Alterna-
tively, an overwhelming accumulation of DNA breaks
could prevent these normally functioning pathways
from eliminating all of the breaks, leading to transloca-
tion events.

Chromosomal fragile sites are known to contribute to
the formation of DNA breaks and are hotspots for sister
chromatin exchange (Glover and Stein, 1987), chromo-
somal translocations, deletions (Glover and Stein, 1988)
and viral integrations (Popescu, 2003). Fragile sites are
non-random specific loci that are stable under normal
conditions, but on certain culture conditions can form
visible gaps or breaks in metaphase chromosomes
(Durkin and Glover, 2007). Depending on their
frequency in the population, fragile sites can be divided
into two classes: common and rare. Common fragile
sites, which constitute the majority of the two classes,
are present in all individuals, and are a normal
component of chromosome structure (Glover, 2006).
Common fragile sites can be further classified based on
their mode of induction, as not all sites are induced by
the same compounds, or to the same extent. Aphidicolin
(APH) induces expression of the majority of common
fragile sites. Other known fragile site-inducing condi-
tions include the addition of 5-bromodeoxyuridine
(BrdU), 5-azacytidine and distamycin A and the
removal of folic acid (Sutherland, 1991). Also, certain
dietary and environmental factors have been shown to
contribute to fragile site expression, including caffeine
(Yunis and Soreng, 1984), ethanol (Kuwano and Kajii,
1987), hypoxia (Coquelle et al., 1998) and pesticides
(Musio and Sbrana, 1997). Together, genetic influences
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on fragile site instability, along with external influences
from chemical, dietary and environmental factors,
suggest a possible role for fragile sites in sporadic
cancer formation.

Fragile sites are also known to be late replicating
regions of the genome. Delayed DNA replication has
been observed in all fragile sites examined to date
(Hansen et al., 1997; Wang et al., 1999; Handt et al.,
2000; Hellman et al., 2000, 2002; Palakodeti et al., 2004;
Pelliccia et al., 2008). Delayed replication at fragile
sites is believed to be attributed to the high propensity
of DNA sequences to form stable secondary DNA
structures (Gacy et al., 1995; Usdin and Woodford, 1995;
Samadashwily et al., 1997; Hewett et al., 1998;
Mishmar et al., 1998; Zlotorynski et al., 2003; Zhang
and Freudenreich, 2007). Difficulties in passing the
replication fork, caused by secondary DNA structure
formed within the fragile DNA regions, could result in
stalled replication. ATR, a major replication checkpoint
protein, is crucial for maintaining fragile site stability
(Casper et al., 2004), and its inhibition by 2-aminopurine
(2-AP) in conjunction with fragile site-inducing chemicals
significantly increases common fragile site expression
(Casper et al., 2002). Therefore, it is suggested that DNA
breakage at fragile sites results from delayed replication
forks that escape the ATR-mediated checkpoint pathway
(Durkin and Glover, 2007).

Many studies point towards the association between
fragile sites and formation of cancer-specific transloca-
tions (Arlt et al., 2006). In a comprehensive survey, we
found that 52% of all known recurrent simple chromo-
somal translocations have at least one gene located
within a fragile site, strongly suggesting a potential role
for fragile sites in the initiation of translocation events
(Burrow et al., 2009). Also, Glover and colleagues found
that on addition of APH, submicroscopic deletions
within FHIT, located in the fragile site FRA3B and
associated with various human cancers, were detected
and resembled those seen in cancer cells (Durkin et al.,
2008). However, there has been no direct evidence
linking breakage at fragile sites to the formation of
cancer-causing chromosomal aberrations.

Genes participating in the two main types of RET/
PTC rearrangements, RET/PTC1 and RET/PTC3, have
been mapped to known fragile sites (Burrow et al.,
2009). RET/PTC rearrangements are commonly found
in the papillary thyroid carcinomas (PTC), and in all
cases result in the fusion of the tyrosine kinase domain
of RET to the 50 portion of various unrelated genes
(Nikiforov, 2008). In the case of the RET/PTC1 and
RET/PTC3, RET is fused with CCDC6 and NCOA4,
respectively (Santoro et al., 2006). These rearrangements
result in the expression of a fusion protein possessing
constitutive tyrosine kinase activity, which is tumori-
genic in thyroid follicular cells (Nikiforov, 2008). Both
genes involved in the RET/PTC3 rearrangement, RET
and NCOA4, are located at 10q11.2 within fragile site
FRA10G, a common fragile site induced by APH. The
CCDC6 gene, involved in RET/PTC1, is located at
10q21.2 within the fragile site FRA10C, a common
fragile site induced by BrdU. Major breakpoint cluster

regions for these genes have been identified, and are
located within intron 11 of RET, intron 5 of NCOA4
and intron 1 of CCDC6 (Smanik et al., 1995; Nikiforov
et al., 1999). RET/PTC rearrangements are known to be
associated with radiation exposure, although most of
adult tumors are sporadic and those patients lack the
radiation exposure history (Nikiforova and Nikiforov,
2008), implying that other mechanisms should be
responsible for DNA breakage and RET/PTC forma-
tion in most tumors. Clinical studies have shown that
RET/PTC3 rearrangements are common in radiation-
induced tumors (Fugazzola et al., 1995; Nikiforov et al.,
1997; Motomura et al., 1998). In contrast, sporadic PTC
tumors have shown a greater prevalence of RET/PTC1
rearrangements (Fenton et al., 2000), which account for
70% of all RET/PTC tumor types (Nikiforova and
Nikiforov, 2008). As the participating genes colocalize
with fragile sites and there is a well-established associa-
tion between RET/PTC rearrangements and DNA
damage induced by ionizing radiation, these rearrange-
ments offer an excellent model to examine directly the
role of fragile sites in the formation of cancer-specific
chromosomal translocations.

In this study, we show that fragile site-inducing
chemicals can create DNA breaks within the RET/PTC
partner genes and ultimately lead to the formation of
RET/PTC rearrangements, offering direct evidence for
the role of fragile sites in cancer-specific translocations.

Results

Chromosomal disruptions in RET/PTC gene partners
on fragile site induction
To examine whether chromosomal regions involved in
RET/PTC rearrangements are part of fragile sites,
HTori-3 human thyroid cells were exposed to APH,
APHþ 2-AP and BrdUþ 2-AP. Metaphase spreads of
cultured HTori-3 cells were hybridized with fluores-
cently labeled BAC probes covering the entire genomic
sequence of RET, NCOA4 and CCDC6 (Figure 1).
Without exposure to fragile site-inducing chemicals,
metaphase chromosomes of HTori-3 cells seemed
normal with smooth contours and intact RET signal
(Figure 1a). With exposure to fragile site-inducing
chemicals, the morphology of metaphase chromosomes
seemed distorted with irregular surfaces and loss of
continuity. After treatment with 0.4 mM APH for 24 h,
RET was disrupted in 6±0.35% of chromosomes
(Figure 1b and Table 1), NCOA4 was disrupted in
0.62% of chromosomes and no breaks were identified in
the CCDC6 gene (Table 1). The appearance of breaks
in RET but not in CCDC6 is consistent with the
characteristics of the fragile sites in which each of these
genes are located (RET located at APH-induced
FRA10G and CCDC6 at BrdU-induced FRA10C).
The frequency of breakage observed in RET is in
agreement with the previously published levels at
FRA10G obtained using Giemsa-stained chromosomes,
which were found to be at 4.6% on an average after
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treatment of human skin fibroblasts with 0.2 mM APH
for 26 h (Murano et al., 1989). After addition of APH
and 2-AP, 5.93±0.52% of chromosomes showed breaks
in RET; 0.63±0.08 % showed breaks in NCOA4 and
0.98±0.58% showed breaks in CCDC6. 2-AP is a
general inhibitor of ATR kinase and is known to
increase fragile site expression with or without the
addition of replication inhibitors like APH (Casper
et al., 2002). Although breakage in RET and NCOA4

did not change significantly, breakage was now seen in
CCDC6, consistent with 2-AP action. Treatment with
BrdU and 2-AP resulted in 2.72±0.78% of chromo-
somes showing breaks in CCDC6 (Figure 1c). However,
RET and NCOA4 were each disrupted in 0.6±0.08% of
chromosomes after BrdU and 2-AP treatment (Table 1).
Increased breakage in CCDC6 is consistent with its
fragile site mode of induction. Also, the level of
breakage at CCDC6 is comparable with previous
reports at FRA10C, with DNA breakage ranging from
4–20% after treatment of human blood lymphocytes
from 10 patients with 50mg/l BrdU for 4–6 h (Suther-
land et al., 1985). The breakage frequency seen in RET
and NCOA4 with BrdU and 2-AP treatment is similar to
that observed in CCDC6 after treatment with APH and
2-AP, showing consistency with 2-AP-induced breakage.
In concert, these results show directly that chemicals
known to result in fragile site breakage cause DNA
breaks within genomic sequences of genes participating
in RET/PTC rearrangements.

Figure 1 Fluorescence in situ hybridization on metaphase chromosomes of HTori-3 cells after treatment with fragile site-inducing
chemicals. (a) Negative control without treatment showing smooth chromosomes with intact RET (red) signal. (b) Exposure to APH
resulting in irregular chromosome contours and one RET signal (red) showing split in the signal whereas four other RET signals are
intact. Centromeric probe for chromosome 10 is labeled in green. (c) Exposure to BrdUþ 2-AP resulting in the disruption of CCDC6
(green) whereas NCOA4 is intact (red). (d) Exposure to APHþ 2-APþBrdU resulting in split in RET (red).

Table 1 Percentage of chromosomes showing disruption of RET,
NCOA4 and CCDC6 after exposure to fragile site-inducing agents

APH APHþ 2-AP BrdUþ 2-AP

RET 6.00±0.35 5.93±0.52 0.60±0.08
NCOA4 0.62 0.63±0.08 0.60±0.08
CCDC6 0 0.98±0.58 2.72±0.78

Abbreviation: APH, Aphidicolin.
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Induction of DNA breaks in intron 11 of the RET gene
by APH treatment
All RET/PTC rearrangements involve the fusion of the
tyrosine kinase domain of RET, and the major break-
point cluster region identified in tumor cells is located
within intron 11 (Smanik et al., 1995). Although
fluorescence in situ hybridization (FISH) experiments
allowed us to detect breaks occurring within the RET
gene sequence, whether or not the breaks are located in
intron 11 was next examined using ligation-mediated
PCR (LM–PCR). HTori-3 cells were treated with APH
for 24 h, and the genomic DNAs from both the treated
and untreated cells were subjected to primer extension
with biotinylated primers that are specific to the regions
of interest (see Materials and methods; Supplementary
Figure 2). The synthesis reaction terminated at a DNA
break to produce a duplex with a blunt end, and the
duplex was ligated to a linker. The linker-attached
DNAs were then isolated by streptavidin beads,
amplified by two rounds of PCR, and visualized by
agarose gel electrophoresis (Figure 2). Each lane on the
agarose gel represents the DNA breaks isolated from
approximately 4000 cells, and each band observed on
the gel corresponds to a break found within the region
of interest. DNA breaks were observed within intron 11
of RET after treatment with APH (Figure 2a) with a
frequency of 0.024±0.015 breaks per 100 cells, which
was significantly higher than that in the untreated cells

(0.004±0.009 per 100 cells, P¼ 0.010; Figure 2b). DNA
samples from lanes 1 and 3–6 in Figure 2a (marked with
asterisks) were sequenced to determine the location of
the induced breakpoints in the RET gene (Figure 3).
DNA sequencing revealed the breakpoints to be located
within intron 11, and at a distance from exon 12 that is
consistent with the size of the PCR product observed on
the agarose gel in Figure 2a. The locations of these
breakpoints were compared with the location of known
breakpoints found in PTC tumors containing RET/PTC
rearrangements (Figure 3) (Bongarzone et al., 1997;
Klugbauer et al., 2001). Each induced breakpoint was
found to be located near a human tumor breakpoint,
with distances ranging from 2–15 base pairs. It is
important to note that these induced breakpoints were
detected before a rearrangement event, whereas the
breakpoints found in tumors have been identified after a
rearrangement event has occurred. In most cases, small
modifications, such as deletions and insertions of 1–18
nucleotides, have been observed surrounding the fusion
points in human tumors. These results confirm that the
exposure of thyroid cells to APH induces the formation
of DNA breaks within the major breakpoint cluster
region found in the RET gene, and these induced
breakpoints are located close to known breakpoints
found in human tumors.

DNA breaks were also examined within FRA3B after
APH treatment. FRA3B is the most inducible fragile site

Figure 2 LM–PCR detection of breaks formed in HTori-3 cells after treatment with APH. LM–PCR detection of DNA breaks
formed in HTori-3 cells at intron 11 of RET (a), the fragile site FRA3B (c) and the non-fragile 12p12.3 region (d) after treatment with
APH. The same reaction was carried out as in (a) for intron 11 of RET, but using DNA from cells without APH treatment (b). Last
lane of each gel is a 100 bp molecular weight ladder. Bands below 100 bp correspond to primer dimers. Asterisks mark DNA fragments
that were sequenced, and results are shown in Figure 3.
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in the human genome and contains FHIT, a gene
involved in several cancers, where microscopic deletions
have been observed after treatment with APH (Wang
et al., 1999; Durkin et al., 2008). Intron 4 of the FHIT
gene, a major region of high instability in various
tumors and APH-treated cells (Boldog et al., 1997;
Corbin et al., 2002), was examined for DNA breaks.
DNA breaks were detected within intron 4 of FHIT
on APH treatment (Figure 2c) at a frequency of
0.036±0.020 breaks per 100 cells, confirming that
indeed the APH treatment can induce fragile site
breakage. An increased number of breaks were observed
within FRA3B in comparison to RET, which is
consistent with FRA3B being the most active fragile
site in the genome. A non-fragile region, 12p12.3
(Zlotorynski et al., 2003) and the G6PD gene, within
FRAXF (a rare folate-sensitive fragile site not induced
by APH), were examined after treatment with APH, and
in contrast to RET and FRA3B, no DNA breaks were
observed within the 12p12.3 region (Figure 2d) or in
exon 1 of G6PD (Supplementary Figure 3). The absence
of breaks in 12p12.3 and G6PD suggests that the DNA
breaks observed within RET and FRA3B after exposure
to fragile site-inducing chemicals are because of their
fragile nature in response to APH.

Generation of RET/PTC rearrangements after treatment
with fragile site-inducing chemicals
To test for the induction of RET/PTC rearrangement
after exposure to fragile site-inducing chemicals, HTori-
3 cells were treated with APH and 2-AP for 24 h with the
addition of BrdU for 5 h. These treatment conditions
were chosen because they have been previously estab-
lished to be optimal for the induction of fragile sites
FRA10C and FRA10G (Sutherland et al., 1985;

Murano et al., 1989). To confirm breakage in the genes
after exposure, metaphase spreads were made and
chromosomes were scored for disruption of the probe
(Figure 1d). The breakage in the probes for RET,
NCOA4 and CCDC6 were 7.47, 1.15 and 2.87%,
respectively. The mRNA was then isolated and used in
RT–PCR for detection of RET/PTC1 and RET/PTC3
formation. To assure that a cell with the rearrangement
would be detected, 1� 106 cells in a 10 cm culture dish
were divided among 30 culture dishes 24 h post-
exposure. Therefore, each well received no more than
3� 104 cells, and if a dish contained only one cell with
RET/PTC, it would constitute one part in 3� 104, a
fraction within the limit of detection (Caudill et al.,
2005). No RET/PTC rearrangement was detected with-
out any treatments in five independent experiments
(Figure 4), indicating an extremely low level of
spontaneous generation of RET/PTC in this human cell
line and the absence of contamination. Similarly, no
RET/PTC rearrangement was detected using the same
experimental approach in HTori-3 cells in four inde-
pendent experiments in a study reported by Caudill et al.
(2005). Exposure to a combination of APH, 2-AP and
BrdU resulted in the generation of RET/PTC1, with five
total events identified in five independent experiments,
each assaying 106 cells (incidence of 2, 1, 2, 0, 0 events
per 106 cells) (Figure 4b). However, no RET/PTC3
rearrangements were identified. Representative RT–
PCR blots are shown in Figure 4a. Statistical analysis
revealed a significant difference in the incidence of RET/
PTC1 induction between untreated cells (zero events)
and cells treated with fragile site-inducing agents (five
total events) (P¼ 0.027). These results show that the
exposure of thyroid cells to fragile site-inducing
chemicals can lead to the formation of a carcinogenic
RET/PTC rearrangement.

Figure 3 Location of breakpoints within intron 11 of RET induced by treatment with APH. (a) DNA samples from lanes 1, and 3–6
in Figure 2a (marked with asterisks) were sequenced, and six breakpoints are identified and indicated by black arrowheads. The
locations of known breakpoints found in tumors containing RET/PTC rearrangements are indicated by gray arrowheads (Bongarzone
et al., 1997; Klugbauer et al., 2001). The gray arrow corresponds to the RET-7 primer with a dual biotin label (gray circles), which is
annealed to exon 12 of the RET gene. The black solid and dashed arrows correspond to the RET-R1b and RET-R1 nested
PCR primers, respectively. The sequence of intron 11 is italicized. (b) The distance of each induced breakpoint from the 50 end of the
RET-R1 primer and the nearest patient tumor breakpoint was listed.
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Discussion

Chromosomal rearrangements contribute to the develop-
ment of many types of human tumors. Therefore, it is
critical to understand the mechanisms of chromosomal
rearrangements in cancer cells. Here, we showed that
DNA breakage at fragile sites FRA10C and FRA10G
under fragile site-inducing conditions initiates and leads
to the generation of RET/PTC1 rearrangement, which is
known to contribute to PTC development. To our
knowledge, this is the first demonstration that a cancer-
specific rearrangement can be produced in human cells
by inducing DNA breaks at fragile sites. Interestingly,
only RET/PTC1 rearrangements were observed, and no
RET/PTC3 rearrangements were identified. Although
breakage was seen within NCOA4, the RET/PTC3
partner gene, the frequency of breakage was lower when
compared with RET and CCDC6. NCOA4 breakage
remained relatively constant with each combination of
fragile site-inducing chemicals, and was about 10-fold
lower than the breakage observed within RET, and
about 4.5-fold below the level found in CCDC6. The
lower incidence of breakage within NCOA4 could
contribute to the lack of RET/PTC3 rearrangement
events. Also, clinical studies have revealed that RET/
PTC3 rearrangements are frequent in radiation-induced
tumors (Fugazzola et al., 1995; Nikiforov et al., 1997;
Motomura et al., 1998), whereas RET/PTC1 rearrange-
ments are more commonly seen in sporadic tumors
(Fenton et al., 2000). Our observation of RET/PTC1
rearrangement, but not RET/PTC3 rearrangement,
generated by fragile site induction, further supports
the idea that sporadic PTC tumors may result from
breakage at fragile sites. It is known that specific
environmental and food toxins (such as caffeine, alcohol
and tobacco) (Yunis and Soreng, 1984; Kuwano and
Kajii, 1987), and other stress factors (such as hypoxia)
(Coquelle et al., 1998) can induce fragile sites. Therefore,
our results suggest that these exogenous factors may
contribute to the occurrence of chromosomal rearrange-
ments, and therefore cancer initiation in human
populations, by a mechanism of DNA breakage at
fragile sites.

To show that fragile site-inducing chemicals can cause
DNA breaks at RET/PTC participating genes, FISH
analysis of chromosome 10, and LM–PCR analysis at
the nucleotide level of the RET gene were performed.
Using FISH, we showed that on exposure of human
thyroid cells to fragile site-inducing chemicals, chromo-
somal breaks are formed within the RET and CCDC6
genes. RET and CCDC6 are located respectively within
the APH and BrdU-induced fragile sites, and show
breakage only after the addition of APH or BrdU,
accordingly. These results not only show that the
fragility is indeed present within the genes involved in
RET/PTC rearrangements, but also underline the
specificity of fragile site induction that was observed in
these regions. Although 2-AP addition is known to
increase overall chromosomal breakage and fragile site
FRA3B expression (Casper et al., 2002), no significant
increase in breakage at RET and NCOA4 genes was
noted in HTori-3 cells, indicating its weaker influence on
the FRA10G site. Furthermore, the addition of 2-AP in
combination with APH resulted in the appearance of
breaks within CCDC6, whereas its combination with
BrdU resulted in breaks within RET and NCOA4. This
nonspecific effect of 2-AP on induction of DNA breaks
at fragile sites is in agreement with its ability to inhibit
ATR protein, which provides a key maintenance role in
fragile site stability.

The DNA breaks generated in RET after exposure to
APH were confirmed to be located within intron 11,
which is the breakpoint cluster region identified in
thyroid tumors, whereas untreated cells showed little to
no breaks. These breaks are further confirmed to be
fragile in nature, when comparing the formation of
breaks within FRA3B, 12p12.3 and G6PD regions.
FRA3B, the most inducible fragile site in the human
genome (Wang et al., 1999; Durkin et al., 2008), showed
DNA breaks after treatment with APH (Figure 2c),
whereas 12p12.3, a non-fragile region, and the G6PD
gene, located within a rare folate-sensitive fragile site,
showed no DNA breakage with the same treatment
(Figure 2d and Supplementary Figure 3b). Together
with cytogenetic analysis, these results show that fragile
site-inducing chemicals can generate breaks within RET

Figure 4 Detection of RET/PTC rearrangements in HTori3 cells after treatment with fragile site-inducing chemicals. (a) Detection of
RET/PTC rearrangements in representative RT–PCR experiment after exposure to APHþ 2-APþBrdU. (PC, positive control).
(b) Number of rearrangement events detected in untreated cells and cells exposed to APHþ 2-APþBrdU. Five independent
experiments were carried out for each treatment, and each experiment analyzed 106 cells.
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and CCDC6 genes, which could result in the formation
of cancer-causing RET/PTC1 rearrangement.

The induction rate of RET/PTC rearrangement by
fragile site-inducing chemicals was four magnitudes
lower than the frequency of chromosomal breaks
observed in RET and CCDC6 genes. DNA breaks, a
serious threat to genome stability and cell viability, can
trigger DNA repair pathways, including homologous
recombination or non-homologous end joining (Shri-
vastav et al., 2008). The action of these pathways
ensures proper repair of DNA breaks, and prevents the
deleterious consequences of such breakage. However,
some (small number of) DNA breaks escaping the repair
pathways will ultimately result in large-scale chromo-
somal changes, such as RET/PTC rearrangement.

This study provides important information about the
mechanisms of formation of carcinogenic chromosomal
rearrangements in human cells. In addition, it estab-
lishes an experimental system that will allow for testing
the role of specific environmental substances, dietary
toxins and other stress factors in the generation of
chromosomal rearrangements and tumor initiation.

Materials and methods

Cell line and culture conditions
The experiments were performed on HTori-3 cells, which are
human thyroid epithelial cells transfected with an origin-
defective SV40 genome. They are characterized as immorta-
lized, partially transformed, differentiated cells having three
copies of chromosome 10 with intact RET, NCOA4 and
CCDC6 loci and preserve the expression of thyroid differ-
entiation markers, such as thyroglobulin production and
sodium iodide symporter, as we reported previously (Caudill
et al., 2005). The cells were purchased from the European
Tissue Culture Collection and grown in RPMI 1640 medium
(Invitrogen, Carlsbad, CA, USA) supplemented with 10%
fetal bovine serum.

Fragile site induction
HTori-3 cells (1� 106) were plated in 10 cm culture dishes and
after 16 h were exposed to APH for 24 h (0.4 mM) or APH and
2-AP (2mM) (Casper et al., 2002). When desired, cells were
treated with BrdU (50mg/l) for 5 h, in addition to 2-AP and/or
APH for 24 h. For DNA breaksite detection, 5� 105 cells were
plated in 10 cm culture dishes and treated in the same manner
as above with 0.4mM APH.

Metaphase chromosome preparation
HTori-3 cells exposed to various chemicals were treated with
0.1 mg/ml of Colcemide for 2 h before harvesting. Cells were
incubated in hypotonic solution (0.075M KCL), fixed in
multiple changes of methanol:acetic acid (3:1) and dropped
onto moistened slides to obtain metaphase spreads. Slides were
aged overnight and pretreated with RNase before proceeding
for hybridization.

Probes for FISH
BAC clones RP11-351D16 (RET), RP11-481A12 (NCOA4),
RP11-435G3 and RP11-369L1 (CCDC6) were obtained
from BAC/PAC Resources, Children’s Hospital, Oakland,
CA, USA. BAC clone RP11-481A12 containing the NCOA4

gene was subcloned into fosmid vector after cutting with
restriction enzymes (Epicenter). A mixture of subcloned
probes (SC10, SC19) containing 70 kb of the NCOA4
gene and its flanking regions was used as a probe for NCOA4.
The probes were labeled by nick translation using Spe-
ctrum Green-dUTP, Spectrum Orange-dUTP or Spectrum
Red-dUTP (Abbott Laboratories, Des Plaines, IL, USA).
Hybridization was performed as previously described (Ciampi
et al., 2005). On average, 150 chromosomes were scored
for breaks in the RET, NCOA4 and CCDC6 probes for
each condition.

DNA breaksite mapping by LM–PCR
To detect DNA breaks within intron 11 of RET induced by
APH, a 50-biotinylated primer RET-7 corresponding to the
RET at the 50 end of exon 12 (the gray arrow in Figure 3a) was
used to extend into intron 11. For first and second rounds of
nested PCR primers RET-R1b and RET-R1 were used,
respectively. To isolate the DNA breaks, a duplex DNA linker
LL3/LP2 was used as described (Kong and Maizels, 2001) as
well as the corresponding linker specific primers LL4 and LL2
(Supplementary Figure 2). For FRA3B, the biotinylated
primer FRA3B-20 was used to allow identification of break
sites occurring at intron 4 of the FHIT gene, which contains
major clusters of APH-induced breakpoints in FRA3B
(Boldog et al., 1997; Corbin et al., 2002), and primers
FRA3B-9 and FRA3B-23 were used in first and second
rounds of nested PCR, respectively. For detection of breaks
within the 12p12.3 region, the biotinylated primer 12p12.3-1
and primers 12p12.3-2 and 12p12.3-3 were used. For detection
of breaks within exon 1 of G6PD, the biotinylated primer
G6PDF3 and primers G6PDF and G6PDF2 were used.
Sequence of linkers and PCR primers is described in the
Supplementary Figure 1.
DNA breaksite mapping was performed as described (Kong

and Maizels, 2001) with modifications (Supplementary Figure
2). Genomic DNA was isolated from HTori-3 cells with or
without APH treatment. Primer extension was performed
using 200 ng of DNA at 45 1C, and the DNA breaks were
isolated through ligation of the LL3/LP2 linker, and then
using streptavidin beads. Amplification of these DNA breaks
was achieved by nested PCR of the extension–ligation
products. The final PCR products were resolved by electro-
phoresis on a 1.3% agarose gel. Each band observed on the gel
corresponds to a break isolated within the region of interest.
To confirm the bands observed were located within intron 11
of RET, the PCR products were sequenced. The exact
breakpoint sites were determined from the sequencing results
by identifying the nucleotide adjacent to the LL3/LP2 linker
sequence.

Detection of RET/PTC rearrangements
Upon treatment with fragile site-inducing agents for 24 h, cells
were split into 30 6 cm culture dishes at a density of
approximately 3� 104 cells per dish and grown for 3–4 days.
To sustain growth for 9 days, cells were transferred to 10 cm
culture dishes for 4–5 days after seeding into 6 cm dishes. RNA
was extracted from each culture dish using a Trizol reagent
(Invitrogen). Then, mRNA was purified using the Oligotex
mRNA minikit (Qiagen, Valencia, CA, USA). RT–PCR was
performed using a Superscript first strand synthesis system kit
and random hexamer priming (Invitrogen, ). PCR was
performed to simultaneously detect RET/PTC1 and RET/
PTC3 rearrangement using primers RET/PTC1 forward,
RET/PTC3 forward, and common reverse (Supplementary
Figure 1). As positive controls, cDNA from RET/PTC1-
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positive TPC-1 cells and RET/PTC3 positive tumor sample
were used. Ten micro liter of each PCR product was
electrophoresed in a 1.5% agarose gel, transferred to the
nylon membrane and hybridized with 32P-labeled oligonucleo-
tide probes specific for RET/PTC1 and RET/PTC3 (Supple-
mentary Figure 1). Evidence of RET/PTC rearrangement in
the cells from a given flask was scored as one RET/PTC event.
All statistics performed using one-tailed Student’s t-test.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported by the National Cancer Institute
(CA113863 to Y-H Wang and YE Nikiforov).

References

Arlt MF, Durkin SG, Ragland RL, Glover TW. (2006). Common
fragile sites as targets for chromosome rearrangements. DNA Repair

(Amst) 5: 1126–1135.
Boldog F, Gemmill RM, West J, Robinson M, Robinson L, Li E et al.

(1997). Chromosome 3p14 homozygous deletions and sequence
analysis of FRA3B. Hum Mol Genet 6: 193–203.

Bongarzone I, Butti MG, Fugazzola L, Pacini F, Pinchera A,
Vorontsova TV et al. (1997). Comparison of the breakpoint regions
of ELE1 and RET genes involved in the generation of RET/PTC3
oncogene in sporadic and in radiation-associated papillary thyroid
carcinomas. Genomics 42: 252–259.

Burrow AA, Williams LE, Pierce LC, Wang YH. (2009). Over half of
breakpoints in gene pairs involved in cancer-specific recurrent
translocations are mapped to human chromosomal fragile sites.
BMC Genomics 10: 59.

Casper AM, Durkin SG, Arlt MF, Glover TW. (2004). Chromosomal
instability at common fragile sites in Seckel syndrome. Am J Hum

Genet 75: 654–660.
Casper AM, Nghiem P, Arlt MF, Glover TW. (2002). ATR regulates

fragile site stability. Cell 111: 779–789.
Caudill CM, Zhu Z, Ciampi R, Stringer JR, Nikiforov YE. (2005).

Dose-dependent generation of RET/PTC in human thyroid cells
after in vitro exposure to gamma-radiation: a model of carcinogenic
chromosomal rearrangement induced by ionizing radiation. J Clin

Endocrinol Metab 90: 2364–2369.
Ciampi R, Zhu Z, Nikiforov YE. (2005). BRAF copy number gains in

thyroid tumors detected by fluorescence in situ hybridization.
Endocr Pathol 16: 99–105.

Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M. (1998). A new
role for hypoxia in tumor progression: induction of fragile site
triggering genomic rearrangements and formation of complex DMs
and HSRs. Mol Cell 2: 259–265.

Corbin S, Neilly ME, Espinosa III R, Davis EM, McKeithan TW, Le
Beau MM. (2002). Identification of unstable sequences within the
common fragile site at 3p14.2: implications for the mechanism of
deletions within fragile histidine triad gene/common fragile site at
3p14.2 in tumors. Cancer Res 62: 3477–3484.

Durkin SG, Glover TW. (2007). Chromosome fragile sites. Annu Rev

Genet 41: 169–192.
Durkin SG, Ragland RL, Arlt MF, Mulle JG, Warren ST, Glover TW.

(2008). Replication stress induces tumor-like microdeletions in
FHIT/FRA3B. Proc Natl Acad Sci USA 105: 246–251.

Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle
RM. (2000). The RET/PTC mutations are common in sporadic
papillary thyroid carcinoma of children and young adults. J Clin

Endocrinol Metab 85: 1170–1175.
Fugazzola L, Pilotti S, Pinchera A, Vorontsova TV, Mondellini P,

Bongarzone I et al. (1995). Oncogenic rearrangements of the RET
proto-oncogene in papillary thyroid carcinomas from children
exposed to the Chernobyl nuclear accident. Cancer Res 55: 5617–5620.

Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT. (1995).
Trinucleotide repeats that expand in human disease form hairpin
structures in vitro. Cell 81: 533–540.

Gasparini P, Sozzi G, Pierotti MA. (2007). The role of chromosomal
alterations in human cancer development. J Cell Biochem 102:
320–331.

Glover TW. (2006). Common fragile sites. Cancer Lett 232: 4–12.
Glover TW, Stein CK. (1987). Induction of sister chromatid exchanges

at common fragile sites. Am J Hum Genet 41: 882–890.
Glover TW, Stein CK. (1988). Chromosome breakage and recombina-

tion at fragile sites. Am J Hum Genet 43: 265–273.
Handt O, Baker E, Dayan S, Gartler SM, Woollatt E,

Richards RI et al. (2000). Analysis of replication timing at
the FRA10B and FRA16B fragile site loci. Chromosome Res 8:
677–688.

Hansen RS, Canfield TK, Fjeld AD, Mumm S, Laird CD, Gartler SM.
(1997). A variable domain of delayed replication in FRAXA fragile
X chromosomes: X inactivation-like spread of late replication. Proc

Natl Acad Sci USA 94: 4587–4592.
Hellman A, Rahat A, Scherer SW, Darvasi A, Tsui LC, Kerem B.

(2000). Replication delay along FRA7H, a common fragile site on
human chromosome 7, leads to chromosomal instability. Mol Cell

Biol 20: 4420–4427.
Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith

DI et al. (2002). A role for common fragile site induction in
amplification of human oncogenes. Cancer Cell 1: 89–97.

Hewett DR, Handt O, Hobson L, Mangelsdorf M, Eyre HJ, Baker E
et al. (1998). FRA10B structure reveals common elements in repeat
expansion and chromosomal fragile site genesis. Mol Cell 1: 773–781.

Klugbauer S, Pfeiffer P, Gassenhuber H, Beimfohr C, Rabes HM.
(2001). RET rearrangements in radiation-induced papillary thyroid
carcinomas: high prevalence of topoisomerase I sites at breakpoints
and microhomology-mediated end joining in ELE1 and RET
chimeric genes. Genomics 73: 149–160.

Kong Q, Maizels N. (2001). Breaksite batch mapping, a rapid method
for assay and identification of DNA breaksites in mammalian cells.
Nucleic Acids Res 29: E33.

Kuwano A, Kajii T. (1987). Synergistic effect of aphidicolin and
ethanol on the induction of common fragile sites. Hum Genet 75:
75–78.

Mishmar D, Rahat A, Scherer SW, Nyakatura G, Hinzmann B,
Kohwi Y et al. (1998). Molecular characterization of a common
fragile site (FRA7H) on human chromosome 7 by the cloning
of a simian virus 40 integration site. Proc Natl Acad Sci USA 95:
8141–8146.

Mitelman F, Johansson B, Mertens F. (2008). Mitelman database
of chromosome aberrations in cancer. http://cgap.nci.nih.gov/
Chromosomes/Mitelman.

Motomura T, Nikiforov YE, Namba H, Ashizawa K, Nagataki S,
Yamashita S et al. (1998). RET rearrangements in Japanese
pediatric and adult papillary thyroid cancers. Thyroid 8: 485–489.

Murano I, Kuwano A, Kajii T. (1989). Fibroblast-specific common
fragile sites induced by aphidicolin. Hum Genet 83: 45–48.

Musio A, Sbrana I. (1997). Aphidicolin-sensitive specific common
fragile sites: a biomarker of exposure to pesticides. Environ Mol

Mutagen 29: 250–255.
Nikiforov YE. (2008). Thyroid carcinoma: molecular pathways and

therapeutic targets. Mod Pathol 21(Suppl 2): S37–43.
Nikiforov YE, Koshoffer A, Nikiforova M, Stringer J, Fagin JA. (1999).

Chromosomal breakpoint positions suggest a direct role for radiation in
inducing illegitimate recombination between the ELE1 and RET genes
in radiation-induced thyroid carcinomas. Oncogene 18: 6330–6334.

Fragile sites generate RET/PTC rearrangements
M Gandhi et al

2279

Oncogene



Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H,
Fagin JA. (1997). Distinct pattern of RET oncogene rearrange-
ments in morphological variants of radiation-induced and
sporadic thyroid papillary carcinomas in children. Cancer Res 57:
1690–1694.

Nikiforova MN, Nikiforov YE. (2008). Molecular genetics of thyroid
cancer: implications for diagnosis, treatment and prognosis. Expert

Rev Mol Diagn 8: 83–95.
Palakodeti A, Han Y, Jiang Y, Le Beau MM. (2004). The role of late/

slow replication of the FRA16D in common fragile site induction.
Genes Chromosomes Cancer 39: 71–76.

Pelliccia F, Bosco N, Curatolo A, Rocchi A. (2008). Replication timing
of two human common fragile sites: FRA1H and FRA2G.
Cytogenet Genome Res 121: 196–200.

Popescu NC. (2003). Genetic alterations in cancer as a result of
breakage at fragile sites. Cancer Lett 192: 1–17.

Samadashwily GM, Raca G, Mirkin SM. (1997). Trinucleotide repeats
affect DNA replication in vivo. Nat Genet 17: 298–304.

Santoro M, Melillo RM, Fusco A. (2006). RET/PTC activation in
papillary thyroid carcinoma: European Journal of Endocrinology
Prize Lecture. Eur J Endocrinol 155: 645–653.

Shrivastav M, De Haro LP, Nickoloff JA. (2008). Regulation
of DNA double-strand break repair pathway choice. Cell Res 18:
134–147.

Smanik PA, Furminger TL, Mazzaferri EL, Jhiang SM. (1995).
Breakpoint characterization of the RET/PTC oncogene in human
papillary thyroid carcinoma. Hum Mol Genet 4: 2313–2318.

Sutherland GR. (1991). Chromosomal fragile sites. Genet Anal Tech

Appl 8: 161–166.
Sutherland GR, Parslow MI, Baker E. (1985). New classes of common

fragile sites induced by 5-azacytidine and bromodeoxyuridine. Hum

Genet 69: 233–237.
Usdin K, Woodford KJ. (1995). CGG repeats associated with DNA

instability and chromosome fragility form structures that block
DNA synthesis in vitro. Nucleic Acids Res 23: 4202–4209.

Wang L, Darling J, Zhang JS, Huang H, Liu W, Smith DI. (1999).
Allele-specific late replication and fragility of the most active
common fragile site, FRA3B. Hum Mol Genet 8: 431–437.

Weterings E, Chen DJ. (2008). The endless tale of non-homologous
end-joining. Cell Res 18: 114–124.

Yunis JJ, Soreng AL. (1984). Constitutive fragile sites and cancer.
Science 226: 1199–1204.

Zhang H, Freudenreich CH. (2007). An AT-rich sequence in human
common fragile site FRA16D causes fork stalling and chromosome
breakage in S.cervisiae. Mol Cell 27: 367–379.

Zlotorynski E, Rahat A, Skaug J, Ben-Porat N, Ozeri E, Hershberg R
et al. (2003). Molecular basis for expression of common and rare
fragile sites. Mol Cell Biol 23: 7143–7151.

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Fragile sites generate RET/PTC rearrangements
M Gandhi et al

2280

Oncogene



   

         Supplementary Figure 1 

Linker and Primer Sequences for LM‐PCR 

LL3      5’‐CGAGTTCAGTCCGTAGACCATGGAGATCTGAATTC‐3’ 

LP2      5’‐GAATTCAGATCTCC‐3’ 

LL4      5’‐CGAGTTCAGTCCGTAGAC‐3’ 

LL2      5’‐GTAGACCATGGAGATCTGAAATTC‐3’ 

RET‐7      5’‐ BBCAGCATCTTCACGGCCACCGTGG‐3’ (B, biotin) 

RET‐R1b    5’‐ TACCCTGCTCTGCCTTTCAGATGG‐3’ 

RET‐R1      5’‐AGTTCTTCCGAGGGAATTCC‐3’ 

FRA3B‐20    5’‐ BBCCTATCTGACGACTTCAC‐3’ (B, biotin) 

FRA3B‐9    5’‐ GAAAGCATAAAGTGTGGC‐3’ 

FRA3B‐23    5’‐ TAACTGCTTATTTTTCCGATGT‐3’ 

12p12.3‐1    5’‐ BBTTTTCTTGACTAGTCTAACCAGAT‐3’ (B, biotin) 

12p12.3‐2    5’‐ TTTCACTTGTATTGATCTCCTTCAT‐3’ 

12.12.3‐3    5’‐ TTTCCACTGTTTGCCGCATTAT‐3’ 

G6PDF3     5’‐BBAGTAAAAACACAAGCCCCGCCCC‐3’ (B, biotin) 

G6PDF      5’‐TAGGGCCGCATCCCGCTCCGGAGAGAAGTCT‐3’ 

G6PDF2     5’‐GGCCACTTTGCAGGGCGTCA‐3’ 

 

PCR primers for Detection of RET/PTC Rearrangements 

RET/PTC1 forward  5'‐CAAGAGAACAAGGTGCTGAAG‐3' 

RET/PTC3 forward  5'‐CGGTATTGTAGCTGTCCCTTTC‐3' 

common reverse  5'‐GCAGGTCTCGAAGCTCACTC‐3' 

 

32P‐labeled oligonucleotide probes 

RET/PTC1    5'‐CGTTACCATCGAGGATCCAAA‐3' 

RET/PTC3    5'‐GAACAGTCAGGAGGTCCAA‐3' 

  

A B
\
B 

D
\
B 

C
\
B 



 

        3’           5’ 
         5’          bb      3’ 
       Denature/Primer extension 
          3’ 
           bb       
        Linker ligation 
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        Isolation of biotinylated products 
        using streptavidin beads 
          5’               3’   
         3’                  bb 

        First round nested PCR 
5’             3’ 
3’             5’ 

        Second round nested PCR 
 
 
 

 
Agarose gel electrophoresis 
to examine PCR products 

   
 

Sequence products to identify DNA breakpoints 
  
 

LL4 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Supplementary Figure 2.  DNA breaksite mapping by LM‐PCR. Genomic DNA was isolated from HTori‐3 
cells with or without APH treatment, and was denatured and then annealed to a biotinylated primer 
specific for the region of interest.  Primer extension was carried out with DNA Sequenase, and the 

reaction terminates at a DNA break.  DNA breaks were isolated through ligation of the LL3/LP2 linker, 
and recovered by streptavidin beads.  Amplification of these DNA breaks was achieved by nested PCR 
of the extension‐ligation products.  The final PCR products were resolved by agarose gel 

electrophoresis.  Each band observed on the gel corresponds to a break found within the region of 
interest.  The exact breakpoint sites were determined by DNA sequencing of the PCR products, and by 
identifying the nucleotide adjacent to the LL3/LP2 linker sequence. 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Figure 2 

 



 

Supplementary Figure 3.    LM‐PCR detection of breaks  formed  in HTori‐3 cells after  treatment with 
APH.  LM‐PCR detection of DNA breaks formed in HTori‐3 cells at  intron 11 of RET (a) and exon 1 of 
G6PD (b) after treatment with APH.  Last lane of each gel is a 100 bp molecular weight ladder. 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