1,889 research outputs found

    Impacts of fragmented accretion streams onto Classical T Tauri Stars: UV and X-ray emission lines

    Get PDF
    Context. The accretion process in Classical T Tauri Stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams.We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods. We model the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through 2D MHD simulations. We explore different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 {\AA}) and OVIII (18.97 {\AA}) line profiles. Results. The impacts of accreting blobs onto the stellar chromosphere produce reverse shocks propagating through the blobs and shocked upflows. These upflows, in turn, hit and shock the subsequent downfalling fragments. As a result, several plasma components differing for the downfalling velocity, density, and temperature are present altoghether. The profiles of C IV doublet are characterized by two main components: one narrow and redshifted to speed ≈\approx 50 km s−1^{-1} and the other broader and consisting of subcomponents with redshift to speed in the range 200 ≈\approx 400 km s−1^{-1}. The profiles of OVIII lines appear more symmetric than C IV and are redshifted to speed ≈\approx 150 km s−1^{-1}. Conclusions. Our model predicts profiles of C IV line remarkably similar to those observed and explains their origin in a natural way as due to stream fragmentation.Comment: 11 pages, 10 figure

    Non-equilibrium of Ionization and the Detection of Hot Plasma in Nanoflare-heated Coronal Loops

    Full text link
    Impulsive nanoflares are expected to transiently heat the plasma confined in coronal loops to temperatures of the order of 10 MK. Such hot plasma is hardly detected in quiet and active regions, outside flares. During rapid and short heat pulses in rarified loops the plasma can be highly out of equilibrium of ionization. Here we investigate the effects of the non-equilibrium of ionization (NEI) on the detection of hot plasma in coronal loops. Time-dependent loop hydrodynamic simulations are specifically devoted to this task, including saturated thermal conduction, and coupled to the detailed solution of the equations of ionization rate for several abundant elements. In our simulations, initially cool and rarified magnetic flux tubes are heated to 10 MK by nanoflares deposited either at the footpoints or at the loop apex. We test for different pulse durations, and find that, due to NEI effects, the loop plasma may never be detected at temperatures above ~5 MK for heat pulses shorter than about 1 min. We discuss some implications in the framework of multi-stranded nanoflare-heated coronal loops.Comment: 22 pages, 7 figures, accepted for publicatio

    The Sun as an X-Ray Star. IV. The Contribution of Different Regions of the Corona to Its X-Ray Spectrum

    Get PDF
    We study X-ray-synthesized spectra of solar regions as templates to interpret analogous stellar spectra. We define three classes of coronal structures of different brightness, low (background quiet corona), medium (active regions), and high (active region cores), and determine their contribution to the solar X-ray emission measure versus temperature, EM(T), luminosity, and spectrum. This study defines the extent of the solar analogy quantitatively and accurately. To this end, we have selected a large sample of full-disk Yohkoh soft X-ray telescope observations taken between the maximum and the minimum of solar cycle 22, obtaining the contribution of each class to the whole Sun's EM(T). From the EM(T) distributions, we synthesize the X-ray spectra of the Sun and of the single classes of solar coronal regions as they would be collected with the ROSAT Position Sensitive Proportional Counter (PSPC) and ASCA Solid-State Imaging Spectrometer. We find that the Sun during the cycle fits well in the stellar scenario as a low-activity star. The ROSAT PSPC hardness ratio (HR) and surface X-ray flux, FPSPC, both increase going from the background corona to the active regions and the cores of the active regions, and range between the values of low and intermediate activity stars. We suggest that the coronae of these stars may be explained as the effect of structures similar to those present on the Sun and that the various levels of X-ray luminosity, HR, and FPSPC are achieved by changing the surface coverage of the different classes of coronal regions

    Mass accretion to young stars triggered by flaring activity in circumstellar disks

    Get PDF
    Young low-mass stars are characterized by ejection of collimated outflows and by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn remove the excess angular momentum from the star-disk system. However, although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. A point not considered to date and relevant for the accretion process is the evidence of very energetic and frequent flaring events in these stars. Flares may easily perturb the stability of the disks, thus influencing the transport of mass and angular momentum. Here we report on three-dimensional magnetohydrodynamic modeling of the evolution of a flare with an idealized non--equilibrium initial condition occurring near the disk around a rotating magnetized star. The model takes into account the stellar magnetic field, the gravitational force, the viscosity of the disk, the magnetic-field-oriented thermal conduction (including the effects of heat flux saturation), the radiative losses from optically thin plasma, and the coronal heating. We show that, during its first stage of evolution, the flare gives rise to a hot magnetic loop linking the disk to the star. The disk is strongly perturbed by the flare: disk material evaporates under the effect of the thermal conduction and an overpressure wave propagates through the disk. When the overpressure reaches the opposite side of the disk, a funnel flow starts to develop there, accreting substantial disk material onto the young star from the side of the disk opposite to the flare.Comment: 14 pages, 10 Figures; accepted for publication on MNRAS. Version with full resolution images can be found at http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_mnras.pd

    European Parliament Pilot Project on Exposure to Indoor air Chemicals and Possible Health Risks

    Get PDF
    This report outlines the results of the 2-year pilot project on indoor air quality and potential health effects executed by the Joint Research Centre and funded by the European Parliament via the Directorate-General Health and Consumer Protection. It had four distinct objectives as follows: 1) to identify and quantify the main air pollutants present in public buildings, including indoor environments where children frequently stay, like schools and kindergartens, 2) to identify the main sources of these pollutants, applying source apportionment analyses, 3) to estimate people¿s exposure to these pollutants while working and/or living in these areas and combined with micro-environmental activity patterns during the day, 4) to evaluate possible health risks due to (chronic) exposure to air pollutants, in particular, for children. The results indicate that indoor air pollution concentrations are consistently higher than the respective outdoor ones for the chemical families this study focused on. Differences attributable to variation in consumer behaviour, climate and type of building materials used, have been identified in the indoor:outdoor ratio of primary pollutants across Europe. These differences account for small variance in the corresponding health risk to the local population across the EU.JRC.I.5-Physical and chemical exposure

    Quadrato Motor Training (QMT) is associated with DNA methylation changes at DNA repeats: A pilot study

    Get PDF
    The control of non-coding repeated DNA by DNA methylation plays an important role in genomic stability, contributing to health and healthy aging. Mind-body practices can elicit psychophysical wellbeing via epigenetic mechanisms, including DNA methylation. However, in this context the effects of movement meditations have rarely been examined. Consequently, the current study investigates the effects of a specifically structured movement meditation, called the Quadrato Motor Training (QMT) on psychophysical wellbeing and on the methylation level of repeated sequences. An 8-week daily QMT program was administered to healthy women aged 40-60 years and compared with a passive control group matched for gender and age. Psychological well-being was assessed within both groups by using self-reporting scales, including the Meaning in Life Questionnaire [MLQ] and Psychological Wellbeing Scale [PWB]). DNA methylation profiles of repeated sequences (ribosomal DNA, LINE-1 and Alu) were determined in saliva samples by deep-sequencing. In contrast to controls, the QMT group exhibited increased Search for Meaning, decreased Presence of Meaning and increased Positive Relations, suggesting that QMT may lessen the automatic patterns of thinking. In the QMT group, we also found site-specific significant methylation variations in ribosomal DNA and LINE-1 repeats, consistent with increased genome stability. Finally, the correlations found between changes in methylation and psychometric indices (MLQ and PWB) suggest that the observed epigenetic and psychological changes are interrelated. Collectively, the current results indicate that QMT may improve psychophysical health trajectories by influencing the DNA methylation of specific repetitive sequences

    Frequency and type of domestic injuries among children during COVID-19 lockdown: what changes from the past? An Italian multicentre cohort study

    Get PDF
    : Accidents are the main cause of injury in children, more than half events happen at home. Aims of this study were to assess if SARS-CoV-2 lockdown influence emergency department (ED) visits due to children domestic accident (DAs) and to identify factors associated with hospitalization. This was a multicentre, observational, and retrospective cohort study involving 16 EDs in Italy and enrolling children (3-13 years) receiving a visit in ED during March-June 2019 and March-June 2020. Risk factors for hospitalization were identified by logistic regression models. In total, 8860 ED visits due to domestic accidents in children occurred before (4380) and during (4480) lockdown, with a mean incidence of DA of 5.6% in 2019 and 17.9% in 2020 (p < 0.001) (IRR: 3.16; p < 0.001). The risk of hospitalization was influenced by the type of occurred accident, with fourfold higher for poisoning and twofold lower risk for stab-wound ones. In addition, a higher risk was reported for lockdown period vs 2019 (OR: 1.9; p < 0.001), males (OR: 1.4; p < 0.001), and it increased with age (OR: 1.1; p < 0.001).    Conclusions: The main limitation of this study is the retrospective collection of data, available only for patients who presented at the hospital. This does highlight possible differences in the total number of incidents that truly occurred. In any case, the COVID-19 lockdown had a high impact on the frequency of DAs and on hospitalization. A public health campaign aimed at caregivers would be necessary to minimize possible risks at home. What is Known: • In Italy, domestic accidents are the second leading cause of paediatric mortality after cancer. • During the first SARS-CoV-2 lockdown in 2020, a sharp decrease in the total number of Emergency Departments visits for all causes was observed, both in children and in adults. What is New: • During the first SARS-CoV-2 lockdown in 2020, domestic accidents involving children increased threefold from the previous year. • Higher risk of hospitalization was showed in minors accessing during 2020 vs 2019, in males than in females and it increased with advancing age. Considering the type of injury, a significant higher risk of hospitalization for poisoning was observed

    XIPE: the X-ray Imaging Polarimetry Explorer

    Full text link
    X-ray polarimetry, sometimes alone, and sometimes coupled to spectral and temporal variability measurements and to imaging, allows a wealth of physical phenomena in astrophysics to be studied. X-ray polarimetry investigates the acceleration process, for example, including those typical of magnetic reconnection in solar flares, but also emission in the strong magnetic fields of neutron stars and white dwarfs. It detects scattering in asymmetric structures such as accretion disks and columns, and in the so-called molecular torus and ionization cones. In addition, it allows fundamental physics in regimes of gravity and of magnetic field intensity not accessible to experiments on the Earth to be probed. Finally, models that describe fundamental interactions (e.g. quantum gravity and the extension of the Standard Model) can be tested. We describe in this paper the X-ray Imaging Polarimetry Explorer (XIPE), proposed in June 2012 to the first ESA call for a small mission with a launch in 2017 but not selected. XIPE is composed of two out of the three existing JET-X telescopes with two Gas Pixel Detectors (GPD) filled with a He-DME mixture at their focus and two additional GPDs filled with pressurized Ar-DME facing the sun. The Minimum Detectable Polarization is 14 % at 1 mCrab in 10E5 s (2-10 keV) and 0.6 % for an X10 class flare. The Half Energy Width, measured at PANTER X-ray test facility (MPE, Germany) with JET-X optics is 24 arcsec. XIPE takes advantage of a low-earth equatorial orbit with Malindi as down-link station and of a Mission Operation Center (MOC) at INPE (Brazil).Comment: 49 pages, 14 figures, 6 tables. Paper published in Experimental Astronomy http://link.springer.com/journal/1068
    • …
    corecore