12 research outputs found

    Reconstructing an Ancestral Mammalian Immune Supercomplex from a Marsupial Major Histocompatibility Complex

    Get PDF
    The first sequenced marsupial genome promises to reveal unparalleled insights into mammalian evolution. We have used theMonodelphis domestica (gray short-tailed opossum) sequence to construct the first map of a marsupial major histocompatibility complex (MHC). The MHC is the most gene-dense region of the mammalian genome and is critical to immunity and reproductive success. The marsupial MHC bridges the phylogenetic gap between the complex MHC of eutherian mammals and the minimal essential MHC of birds. Here we show that the opossum MHC is gene dense and complex, as in humans, but shares more organizational features with non-mammals. The Class I genes have amplified within the Class II region, resulting in a unique Class I/II region. We present a model of the organization of the MHC in ancestral mammals and its elaboration during mammalian evolution. The opossum genome, together with other extant genomes, reveals the existence of an ancestral “immune supercomplex” that contained genes of both types of natural killer receptors together with antigen processing genes and MHC genes

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    Modulation of the spleen transcriptome in domestic turkey (Meleagris gallopavo) in response to aflatoxin B1 and probiotics

    No full text
    Poultry are highly susceptible to the immunotoxic effects of the food-borne mycotoxin aflatoxin B1 (AFB1). Exposure impairs cell-mediated and humoral immunity, limits vaccine efficacy, and increases the incidence of costly secondary infections. We investigated the molecular mechanisms of AFB1 immunotoxicity and the ability of a Lactobacillus-based probiotic to protect against aflatoxicosis in the domestic turkey (Meleagris gallopavo). The spleen transcriptome was examined by RNA sequencing (RNA-seq) of 12 individuals representing four treatment groups. Sequences (6.9 Gb) were de novo assembled to produce over 270,000 predicted transcripts and transcript fragments. Differential expression analysis identified 982 transcripts with statistical significance in at least one comparison between treatment groups. Transcripts with known immune functions comprised 27.6 % of significant expression changes in the AFB1-exposed group. Short exposure to AFB1 suppressed innate immune transcripts, especially from antimicrobial genes, but increased the expression of transcripts from E3 ubiquitin-protein ligase CBL-B and multiple interleukin-2 response genes. Up-regulation of transcripts from lymphotactin, granzyme A, and perforin 1 could indicate either increased cytotoxic potential or activation-induced cell death in the spleen during aflatoxicosis. Supplementation with probiotics was found to ameliorate AFB1-induced expression changes for multiple transcripts from antimicrobial and IL-2-response genes. However, probiotics had an overall suppressive effect on immune-related transcripts

    Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    No full text

    Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    No full text
    We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture
    corecore