119 research outputs found

    Composition changes after the "Halloween" solar proton event : the high-energy particle precipitation in the atmosphere (HEPPA) model versus MIPAS data intercomparison study

    Get PDF
    We have compared composition changes of NO, NO2, H2O2, O3, N2O, HNO3, N2O5, HNO4, ClO, HOCl, and ClONO2 as observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat in the aftermath of the “Halloween” solar proton event (SPE) in late October 2003 at 25–0.01 hPa in the Northern Hemisphere (40–90° N) and simulations performed by the following atmospheric models: the Bremen 2-D model (B2dM) and Bremen 3-D Chemical Transport Model (B3dCTM), the Central Aerological Observatory (CAO) model, Fin- ROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, the modeling tool for SOlar Climate Ozone Links studies (SOCOL and SOCOLi), and the Whole Atmosphere Community Climate Model (WACCM4). The large number of participating models allowed for an evaluation of the overall ability of atmospheric models to reproduce observed atmospheric perturbations generated by SPEs, particularly with respect to NOy and ozone changes. We have further assessed the meteorological conditions and their implications for the chemical response to the SPE in both the models and observations by comparing temperature and tracer (CH4 and CO) fields. Simulated SPE-induced ozone losses agree on average within 5% with the observations. Simulated NOy enhancements around 1 hPa, however, are typically 30% higher than indicated by the observations which are likely to be related to deficiencies in the used ionization rates, though other error sources related to the models’ atmospheric background state and/or transport schemes cannot be excluded. The analysis of the observed and modeled NOy partitioning in the aftermath of the SPE has demonstrated the need to implement additional ion chemistry (HNO3 formation via ion-ion recombination and water cluster ions) into the chemical schemes. An overestimation of observed H2O2 enhancements by all models hints at an underestimation of the OH/HO2 ratio in the upper polar stratosphere during the SPE. The analysis of chlorine species perturbations has shown that the encountered differences between models and observations, particularly the underestimation of observed ClONO2 enhancements, are related to a smaller availability of ClO in the polar night region already before the SPE. In general, the intercomparison has demonstrated that differences in the meteorology and/or initial state of the atmosphere in the simulations cause a relevant variability of the model results, even on a short timescale of only a few days

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    SequĂȘncias de culturas em sistema de semeadura direta: I - produção de matĂ©ria seca e acĂșmulo de nutrientes

    No full text
    Em sistema de semeadura direta, os resĂ­duos das culturas de entressafra sĂŁo utilizados com as finalidades de proteger a superfĂ­cie do solo dos agentes erosivos e de promover a ciclagem de nutrientes. O objetivo deste trabalho foi avaliar a produção de matĂ©ria seca e o acĂșmulo de nutrientes nos resĂ­duos vegetais provenientes de diferentes sequĂȘncias de culturas em semeadura direta. O experimento foi conduzido em Jaboticabal-SP (48° 18' W e 21° 15' S), em um Latossolo Vermelho eutrĂłfico. O delineamento experimental foi em faixas, com trĂȘs repetiçÔes. Os tratamentos foram constituĂ­dos pela combinação de trĂȘs sequĂȘncias de culturas de verĂŁo (rotação soja-milho e monoculturas de milho e de soja) com sete culturas de entressafra (milho, sorgo, girassol, crotalĂĄria, guandu, nabo forrageiro e milheto). O experimento iniciou-se em 2002, e o presente estudo refere-se aos anos agrĂ­colas 2007/2008 e 2008/2009. Avaliaram-se as quantidades de matĂ©ria seca e o acĂșmulo de nutrientes pelas culturas. As culturas com colheita de grĂŁos na entressafra (milho, sorgo e girassol) produziram resĂ­duos com menor quantidade de nutrientes acumulados e em menor quantidade de matĂ©ria seca, quando comparadas Ă s culturas com trituração no florescimento (crotalĂĄria, guandu, nabo forrageiro e milheto). Milheto e crotalĂĄria apresentaram as maiores produçÔes de matĂ©ria seca e os maiores acĂșmulos de nutrientes. O milheto mostrou os maiores acĂșmulos de K e Mg, e a crotalĂĄria, maiores acĂșmulos de N e P. As gramĂ­neas cultivadas na entressafra apresentaram maior desenvolvimento quando em sucessĂŁo ao cultivo de soja no verĂŁo anterior, com maior produção de matĂ©ria seca de milheto e, tambĂ©m, maior produtividade de grĂŁos de milho e sorgo
    • 

    corecore