125 research outputs found

    Microstructure and Residual Stress Evolution of Laser Powder Bed Fused Inconel 718 under Heat Treatments

    Get PDF
    AbstractThe current work aimed to study the influence of various heat treatments on the microstructure, hardness, and residual stresses of Inconel 718 processed by laser powder bed fusion process. The reduction in residual stresses is crucial to avoid the deformation of the component during its removal from the building platform. Among the different heat treatments, 800 °C kept almost unaltered the original microstructure, reducing the residual stresses. Heat treatments at 900, 980, and 1065 °C gradually triggered the melt pool and dendritic structures dissolution, drastically reducing the residual stresses. Heat treatments at 900 and 980 °C involved the formation of Ύ phases, whereas 1065 °C generated carbides. These heat treatments were also performed on components with narrow internal channels revealing that heat treatments up to 900 °C did not trigger sintering mechanisms allowing to remove the powder from the inner channels

    An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition

    Get PDF
    Abstract In this work, 316L cubes were produced by Directed Energy Deposition (DED) process. To evaluate the effect of deposition patterns on the microstructure, mechanical performance and residual stress of 316L samples, two different deposition strategies are selected (67° and 90°). The general microstructure is revealed, and then the effect of deposition pattern on the microstructure of 316L alloy is evaluated through the Primary Cellular Arm Spacing (PCAS) analysis. The cooling rate in each sample is estimated according to the PCAS values. Interestingly, it is found that by increasing the rotation angle per layer, the PCAS value decreases as a consequence of increment in the cooling rate. On the other hand, in both cases, by increasing the distance from the substrate, due to the changes in cooling mechanisms, the cooling rate at first decreases and then at the last layers increases again. The phase composition analysis of 316L samples confirms the predictions that suggested the presence of residual Ύ-ferrite in the final microstructure. In fact, the final microstructure of samples is characterized by austenitic dendrites together with some residual Ύ-ferrite in the interdendritic regions. Moreover, the microstructural evaluations exhibit that during the DED process, some metallic inclusions are formed within the 316L samples that consequently deteriorates their mechanical properties. Tensile results show that the samples with 90° rotation per layer have a better mechanical performance such as slightly higher ultimate tensile strength and almost 35% higher elongation to fracture, mainly owing to their finer microstructure and slightly less oxide content. However, in both cases, the elongation of the 316L samples is lower than the typical elongation of this material produced via DED. This discrepancy is found to be as a result of higher inclusions contents in the samples produced in this work with respect to those of literature. Lastly, it is found that the residual stresses on the top surfaces are similar for both deposition patterns, although higher stress values are observed on the lateral surfaces of the cubes produce using the 90° rotation per layer

    Reducing Marginalization of Fishermen through Participatory Action Research in the Zambezi Valley, Zimbabwe

    Get PDF
    Equitable sharing of fishing resources has been the major source of tension between Zambezi Valley communities and the Zimbabwe government authorities since the 1950s following the Kariba Dam-induced resettlement. Using participatory action research, it was found that the fishing license system and criminalization of fishermen were the major sources of tension between fishermen and government authorities. Engaging with government authorities to address these tensions, fishermen were recognized as partners in the fishing industry. The conclusion was that enhancing community agencies through participatory action research would be fundamental towards creating socially just and equitable arrangements that could emancipate marginalized communities from abject poverty

    Residual stress investigation on Ti-48Al-2Cr-2Nb samples produced by Electron Beam Melting process

    Get PDF
    Abstract Ti-48Al-2Cr-2Nb (Ti-48-2-2) is an intermetallic alloy belonging to a family of gamma-TiAl intermetallic alloys that are attracting significant attention. Electron Beam Melting (EBM) process is today the only manufacturing process that allows effective production of parts made by these kinds of alloys. Proper process control avoids high temperatures in the surrounding areas that may generate significant residual stresses that could cause micro-cracks. In this paper, an investigation on the residual stress state on Ti-48-2-2 parts is carried out using the hole drilling method. In particular, the influence of EBM process parameters is evaluated in order to understand the effects of the residual stresses on part integrity

    Analysis of single tracks of IN718 produced by laser powder directed energy deposition process

    Get PDF
    Despite the powerful capabilities of the Laser Powder Directed Energy Deposition (LP-DED) process, the applications are limited almost to feasibility analyses of simple case studies. This arises from the knowledge gap in the process parameters identification and optimization of the deposition quality. A practical approach is to delineate the process parameters window by producing single tracks with different sets of parameter levels. This paper aims to study, through statistical analysis, the effect of process parameters on the characteristic dimensions of IN718 single tracks. Results will allow empirical relations to be identified between track geometry and the analysed parameters. These relations will support process optimization

    Laser Powder Bed Fusion of Inconel 718: Residual Stress Analysis Before and After Heat Treatment

    Get PDF
    Residual stresses (RS) of great magnitude are usually present in parts produced by Laser Powder Bed Fusion (PBF-LB), mainly owing to the extreme temperature gradients and high cooling rates involved in the process. Those “hidden” stresses can be detrimental to a part’s mechanical properties and fatigue life; therefore, it is crucial to know their magnitude and orientation. The hole-drilling strain-gage method was used to determine the RS magnitude and direction-depth profiles. Cuboid specimens in the as-built state, and after standard solution annealing and ageing heat treatment conditions, were prepared to study the RS evolution throughout the heat treatment stages. Measurements were performed on the top and lateral surfaces. In the as-built specimens, tensile stresses of ~400 MPa on the top and above 600 MPa on the lateral surface were obtained. On the lateral surface, RS anisotropy was noticed, with the horizontally aligned stresses being three times lower than the vertically aligned. RS decreased markedly after the first heat treatment. On heat-treated specimens, magnitude oscillations were observed. By microstructure analysis, the presence of carbides was verified, which is a probable root for the oscillations. Furthermore, compressive stresses immediate to the surface were obtained in heat-treated specimens, which is not in agreement with the typical characteristics of parts fabricated by PBF-LB, i.e., tensile stresses at the surface and compressive stresses in the part’s core.info:eu-repo/semantics/publishedVersio

    Acoustic sequences in non-human animals: a tutorial review and prospectus.

    Get PDF
    Animal acoustic communication often takes the form of complex sequences, made up of multiple distinct acoustic units. Apart from the well-known example of birdsong, other animals such as insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these sequences seems clear (e.g. mate attraction and territorial defence). More often however, researchers have only begun to characterise - let alone understand - the significance and meaning of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences should be defined and analysed. Our review aims to outline suitable methods for testing these hypotheses, and to describe the major limitations to our current and near-future knowledge on questions of acoustic sequences. This review and prospectus is the result of a collaborative effort between 43 scientists from the fields of animal behaviour, ecology and evolution, signal processing, machine learning, quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, 'Analysing vocal sequences in animals'. Our goal is to present not just a review of the state of the art, but to propose a methodological framework that summarises what we suggest are the best practices for research in this field, across taxa and across disciplines. We also provide a tutorial-style introduction to some of the most promising algorithmic approaches for analysing sequences. We divide our review into three sections: identifying the distinct units of an acoustic sequence, describing the different ways that information can be contained within a sequence, and analysing the structure of that sequence. Each of these sections is further subdivided to address the key questions and approaches in that area. We propose a uniform, systematic, and comprehensive approach to studying sequences, with the goal of clarifying research terms used in different fields, and facilitating collaboration and comparative studies. Allowing greater interdisciplinary collaboration will facilitate the investigation of many important questions in the evolution of communication and sociality.This review was developed at an investigative workshop, “Analyzing Animal Vocal Communication Sequences” that took place on October 21–23 2013 in Knoxville, Tennessee, sponsored by the National Institute for Mathematical and Biological Synthesis (NIMBioS). NIMBioS is an Institute sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Awards #EF-0832858 and #DBI-1300426, with additional support from The University of Tennessee, Knoxville. In addition to the authors, Vincent Janik participated in the workshop. D.T.B.’s research is currently supported by NSF DEB-1119660. M.A.B.’s research is currently supported by NSF IOS-0842759 and NIH R01DC009582. M.A.R.’s research is supported by ONR N0001411IP20086 and NOPP (ONR/BOEM) N00014-11-1-0697. S.L.DeR.’s research is supported by the U.S. Office of Naval Research. R.F.-i-C.’s research was supported by the grant BASMATI (TIN2011-27479-C04-03) from the Spanish Ministry of Science and Innovation. E.C.G.’s research is currently supported by a National Research Council postdoctoral fellowship. E.E.V.’s research is supported by CONACYT, Mexico, award number I010/214/2012.This is the accepted manuscript. The final version is available at http://dx.doi.org/10.1111/brv.1216
    • 

    corecore