307 research outputs found

    Application of compositional models for glycan HILIC data

    Get PDF
    Glycoconjugates constitute a major class of biomolecules which include glycoproteins, glycosphingolipids and proteoglycans. The enzymatic process in which glycans (sugar chains) are linked to proteins or lipids is called glycosylation. Glycosylation is involved in many biological processes, both physiological and pathological, inlcuding host-pathogen interactions, tumour invasion, cell trafficking and signalling. Changes in glycan structure are thought be be at least partly responsible for the development of inflammation, infection, arteriosclerosis, immune defects and autoimmunity. Such changes have been observed in human diseases such as diabetes mellitus, rheumatoid arthritis and Alzheimer’s Disease. Aberrant patterns of glycosylation are also a universal feature of cancer cells. The field of glycobiology thus shows great potential for the discovery of glycan biomarkers for disease diagnosis and prognosis. Here we focus specifically on N-glycans, that is, glycans attached to protein molecules via a nitrogen atom. This class of glycans is the best characterized. High-throughput HILIC analysis is a well-established technique for the separation and quantification of N-linked glycans released from glycoproteins. HILIC analysis quantifies theN-glycan structures in serum via a chromatogram, which is subsequently standardized and integrated. The generated data for each sample is a set of relative HILIC peak areas and as a result, the data is compositional. To-date, most statistical analyses of these glycan data fail to account for their compositional nature. We compare and contrast three compositional data models for the glycan HILIC data: the Dirichlet, Nested Dirichlet and Logistic Normal models, with the intention of providing tools for the statistical analysis of compositional data analysis in the glycobiology field. We use these three models for classification of disease/control cases in ovarian and lung cancer diagnosis applications. We discuss and compare these models in terms of their classification performance and goodness-of-fit

    Automated, high-throughput serum glycoprofiling platform

    Get PDF
    Complex carbohydrates are rapidly becoming excellent biomarker candidates because of their high sensitivity to pathological changes. However, the discovery of clinical glycobiomarkers has been slow, due to the scarcity of high-throughput glycoanalytical workflows that allow rapid glycoprofiling of large clinical sample sets. To generate high-quality quantitative glycomics data in a high-throughput fashion, we have developed a robotized platform for rapid serum-based N-glycan sample preparation. The sample preparation workflow features a fully automated, rapid glycoprotein denaturation followed by sequential enzymatic glycan release, glycan purification on solid-supported hydrazide and fluorescent labelling. This allows accurate glycan quantitation by ultra-high performance liquid chromatography (UPLC). The sample preparation workflow was automated using an eight-channel Hamilton Robotics liquid handling workstation, allowing the preparation of almost 100 samples in 14 hours with excellent reproducibility and thus should greatly facilitate serum-based glyco-biomarker discovery

    Region-Specific Characterization of N-Glycans in the Striatum and Substantia Nigra of an Adult Rodent Brain

    Get PDF
    N-glycan alterations in the nervous system can result in different neuropathological symptoms such as mental retardation, seizures, and epilepsy. Studies have reported the characterization of N-glycans in rodent brains, but there is a lack of spatial resolution as either the tissue samples were homogenized or specific proteins were selected for analysis of glycosylation. We hypothesize that region-specific resolution of N-glycans isolated from the striatum and substantia nigra (SN) can give an insight into the establishment and pathophysiological degeneration of neural circuitry in Parkinson’s disease. Specific objectives of the study include isolation of N-glycans from the rat striatum and SN; reproducibility, resolution, and relative quantitation of N-glycome using ultra-performance liquid chromatography (UPLC), weak anion exchange-UPLC, and lectin histochemistry. The total N-glycomes from the striatum and SN were characterized using database mining (GlycoStore), exoglycosidase digestions, and liquid chromatography-mass spectrometry. It revealed significant differences in complex and oligomannose type N-glycans, sialylation (mono-, di-, and tetra-), fucosylation (tri-, core, and outer arm), and galactosylation (di-, tri-, and tetra-) between striatum and SN N-glycans with the detection of phosphorylated N-glycans in SN which were not detected in the striatum. This study presents the most comprehensive comparative analysis of relative abundances of N-glycans in the striatum and SN of rodent brains, serving as a foundation for identifying “brain-type” glycans as biomarkers or therapeutic targets and their modulation in neurodegenerative disorders

    An insight on the N-glycome of notochordal cell-rich porcine nucleus pulposus during maturation.

    Get PDF
    Degeneration of the intervertebral disc is an age-related condition. It also accompanies the disappearance of the notochordal cells, which are remnants of the developmental stages of the nucleus pulposus (NP). Molecular changes such as extracellular matrix catabolism, cellular phenotype, and glycosaminoglycan loss in the NP have been extensively studied. However, as one of the most significant co- and posttranslational modifications, glycosylation has been overlooked in cells in degeneration. Here, we aim to characterize the N-glycome of young and mature NP and identify patterns related to aging. Accordingly, we isolated N-glycans from notochordal cell-rich NP from porcine discs, characterized them using a combined approach of exoglycosidase digestions and analysis with hydrophilic interaction ultra-performance liquid chromatography and mass spectrometry. We have assigned over 300 individual N-glycans for each age group. Moreover, we observed a notable abundance of antennary structures, galactosylation, fucosylation, and sialylation in both age groups. In addition, as indicated from our results, increasing outer arm fucosylation and decreasing α(2,3)-linked sialylation with aging suggest that these traits are age-dependent. Lastly, we have focused on an extensive characterization of the N-glycome of the notochordal cell-rich NP in aging without inferred degeneration, describing glycosylation changes specific for aging only. Our findings in combination with those of other studies, suggest that the degeneration of the NP does not involve identical processes as aging

    N‑Glycosylation of Serum IgG and Total Glycoproteins in MAN1B1 Deficiency

    Get PDF
    MAN1B1-CDG has recently been characterized as a type II congenital disorder of glycosylation (CDG), disrupting not only protein N-glycosylation but also general Golgi morphology. Using our high-throughput, quantitative ultra-performance liquid chromatography assay, we achieved a detailed characterization of the glycosylation changes in both total serum glycoproteins and isolated serum IgG from ten previously reported MAN1B1-CDG patients. We have identified and quantified novel hybrid high-mannosylated MAN1B1-CDG-specific IgG glycans and found an increase of sialyl Lewis x (sLex) glycans on serum proteins of all patients. This increase in sLex has not been previously reported in any CDG. These findings may provide insight into the pathophysiology of this CDG

    Tongue Cancer Patients Can be Distinguished from Healthy Controls by Specific N-Glycopeptides Found in Serum

    Get PDF
    Purpose Experimental design There are no blood biomarkers to detect early-stage oral cavity squamous cell carcinoma (OSCC) prior to clinical signs. Most OSCC incidence is associated with significant morbidity and poor survival. The authors aimed to use mass-spectrometry (MS) technology to find specific N-glycopeptides potentially serving as serum biomarkers for preclinical OSCC screening. Serum samples from 14 patients treated for OSCC (stage I or stage IV) with 12 age- and sex-matched controls are collected. Quantitative label-free N-glycoproteomics is performed, with MS/MS analysis of the statistically significantly different N-glycopeptides. Results Conclusions and clinical relevance Combined with a database search using web-based software (GlycopeptideID), MS/MS provided detailed N-glycopeptide information, including glycosylation site, glycan composition, and proposed structures. Thirty-eight tryptic N-glycopeptides are identified, having 19 unique N-glycosylation sites representing 14 glycoproteins. OSCC patients, including stage I tumors, can be differentiated from healthy controls based on the expression levels of these glycoforms. N-glycopeptides of IgG1, IgG4, haptoglobin, and transferrin have statistically significant different abundances between cases and controls. The authors are the first to suggest specific N-glycopeptides to serve as potential serum biomarkers to detect preclinical OSCC in patients. These N-glycopeptides are the lead candidates for validation as future diagnostic modalities of OSCC as early as stage I.Peer reviewe

    Human plasma N-glycosylation as analyzed by MALDI-FTICR-MS associates with markers of inflammation and metabolic health

    Get PDF
    Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. While not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome (TPNG), it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large scale studies (n > 200) of the TPNG have been performed with methods of chromatographic and electrophoretic separation, which, while being informative, are limited in resolving the structural complexity of plasma N-glycans. Mass spectrometry (MS) has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species. Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)- MS to study the TPNGs of 2,144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex4HexNAc2 to Hex7HexNAc6dHex1Neu5Ac4, as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT) and smoking. Overall, the bisection, galactosylation and sialylation of diantennary species, the sialylation of tetraantennary species, and the size of high-mannose species proved to be important plasma characteristics associated with inflammation and metabolic health

    Targeted apoptosis in ovarian cancer cells through mitochondrial dysfunction in response to Sambucus nigra agglutinin

    Get PDF
    Ovarian carcinoma (OC) patients encounter the severe challenge of clinical management owing to lack of screening measures, chemoresistance and finally dearth of non-toxic therapeutics. Cancer cells deploy various defense strategies to sustain the tumor microenvironment, among which deregulated apoptosis remains a versatile promoter of cancer progression. Although recent research has focused on identifying agents capable of inducing apoptosis in cancer cells, yet molecules efficiently breaching their survival advantage are yet to be classified. Here we identify lectin, Sambucus nigra agglutinin (SNA) to exhibit selectivity towards identifying OC by virtue of its specific recognition of α-2, 6-linked sialic acids. Superficial binding of SNA to the OC cells confirm the hyper-sialylated status of the disease. Further, SNA activates the signaling pathways of AKT and ERK1/2, which eventually promotes de-phosphorylation of dynamin-related protein-1 (Drp-1). Upon its translocation to the mitochondrial fission loci Drp-1 mediates the central role of switch in the mitochondrial phenotype to attain fragmented morphology. We confirmed mitochondrial outer membrane permeabilization resulting in ROS generation and cytochrome-c release into the cytosol. SNA response resulted in an allied shift of the bioenergetics profile from Warburg phenotype to elevated mitochondrial oxidative phosphorylation, altogether highlighting the involvement of mitochondrial dysfunction in restraining cancer progression. Inability to replenish the SNA-induced energy crunch of the proliferating cancer cells on the event of perturbed respiratory outcome resulted in cell cycle arrest before G2/M phase. Our findings position SNA at a crucial juncture where it proves to be a promising candidate for impeding progression of OC. Altogether we unveil the novel aspect of identifying natural molecules harboring the inherent capability of targeting mitochondrial structural dynamics, to hold the future for developing non-toxic therapeutics for treating OC
    corecore