40 research outputs found

    Case Report Immune Thrombocytopenia in a Child with T Cell Lymphoblastic Lymphoma

    Get PDF
    We describe the case of a 13-year-old boy who presented with persistent thrombocytopenia during maintenance chemotherapy with mercaptopurine and methotrexate for T cell lymphoblastic lymphoma. He was diagnosed with immune thrombocytopenia (ITP) after thorough investigations for the relapse of lymphoma and was successfully treated with immunoglobulin and steroids. ITP is known to be associated with chronic lymphocytic leukemia, Hodgkin lymphoma, and various types of non-Hodgkin lymphoma but rarely with T cell non-Hodgkin lymphoma or in children. Diagnosis of ITP with lymphoma is challenging due to the many factors affecting platelet counts, and ITP often complicates the diagnosis or treatment course of lymphoma. The underlying mechanism of ITP with NHL is still unclear. Drug-induced immunomodulation with a reduction of regulatory T cells might have contributed to the development of ITP in our case

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Immune Thrombocytopenia in a Child with T Cell Lymphoblastic Lymphoma

    No full text
    We describe the case of a 13-year-old boy who presented with persistent thrombocytopenia during maintenance chemotherapy with mercaptopurine and methotrexate for T cell lymphoblastic lymphoma. He was diagnosed with immune thrombocytopenia (ITP) after thorough investigations for the relapse of lymphoma and was successfully treated with immunoglobulin and steroids. ITP is known to be associated with chronic lymphocytic leukemia, Hodgkin lymphoma, and various types of non-Hodgkin lymphoma but rarely with T cell non-Hodgkin lymphoma or in children. Diagnosis of ITP with lymphoma is challenging due to the many factors affecting platelet counts, and ITP often complicates the diagnosis or treatment course of lymphoma. The underlying mechanism of ITP with NHL is still unclear. Drug-induced immunomodulation with a reduction of regulatory T cells might have contributed to the development of ITP in our case

    Bacterial rRNA-Targeted Reverse Transcription-PCR Used To Identify Pathogens Responsible for Fever with Neutropenia▿

    No full text
    The purpose of this study was to evaluate the clinical utility of bacterial rRNA-targeted reverse transcription-quantitative PCR (BrRNA RT-qPCR) assays for identifying the bacterial pathogens that cause fever with neutropenia in pediatric cancer patients, by comparing the bacterial detection rate of this technique with that of blood culture. One milliliter of blood was collected from pediatric patients who developed fever with neutropenia following cancer chemotherapy. BrRNA RT-qPCR was performed using 16 primer sets, each designed for a specific type of bacteria. The entire BrRNA RT-qPCR procedure took less than 5 h. Blood culture was performed at the same time, following the standard institutional procedure. Blood from 13 patients was collected during 23 febrile neutropenic episodes. Of these samples, bacteria were identified in 16 by BrRNA RT-qPCR (69.6%) and in 4 by blood culture (17.4%, P < 0.001). In all 4 blood culture-positive samples, BrRNA RT-qPCR detected the same type of bacteria as that identified by culture. In 9 samples, more than 4 types of bacteria were identified simultaneously by BrRNA RT-qPCR, most of which were anaerobic bacteria known to be part of the gut flora. We conclude that BrRNA RT-qPCR could be useful in the diagnosis of fever with neutropenia, given its high bacterial detection rate, short turnaround time, and the small blood sample required compared with the standard blood culture techniques. Our findings also indicate that anaerobic intestinal bacteria, which are difficult to detect by standard culture techniques, may be responsible for some cases of febrile neutropenia

    Abemaciclib in combination with endocrine therapy for East Asian patients with HR+, HER2− advanced breast cancer: MONARCH 2 & 3 trials

    No full text
    This post hoc analysis of MONARCH 2 and MONARCH 3 assesses the efficacy, safety, and pharmacokinetics (PK) of abemaciclib in combination with endocrine therapy (ET) in East Asian patients with hormone receptor positive (HR+), human epidermal growth factor receptor 2‐negative (HER2−) advanced breast cancer. MONARCH 2 and MONARCH 3 are global, randomized, double‐blind, phase 3 studies of abemaciclib/placebo + fulvestrant and abemaciclib/placebo + nonsteroidal aromatase inhibitor (NSAI, anastrozole or letrozole), respectively. The East Asian population comprised 212 (31.7%) of the 669 intent‐to‐treat (ITT) population in the MONARCH 2 trial and 144 (29.2%) of the 493 ITT patients in the MONARCH 3 trial. In the East Asian population, median progression‐free survival (PFS) was significantly prolonged in the abemaciclib arm compared with placebo in both MONARCH 2 (hazard ratio [HR], 0.520; 95% confidence interval [CI], 0.362 to 0.747; P < .001; median: 21.2 vs 11.6 months) and MONARCH 3 (HR, 0.326; 95% CI, 0.200 to 0.531, P < .001; median: not reached vs 12.82 months). Diarrhea (MONARCH 2: 90%; MONARCH 3: 88%) and neutropenia (MONARCH 2: 68%; MONARCH 3: 58%) were the most frequent adverse events observed in the East Asian populations. Abemaciclib exposures and PK were similar in East Asians and the non‐East Asian populations of both trials. Abemaciclib in combination with ET in the East Asian populations of MONARCH 2 and MONARCH 3 provided consistent results with the ITT populations, demonstrating improvements in efficacy with generally tolerable safety profiles for patients with HR+, HER2− advanced breast cancer

    Abemaciclib in combination with endocrine therapy for East Asian patients with HR+, HER2- advanced breast cancer: MONARCH 2 & 3 trials

    No full text
    This post hoc analysis of MONARCH 2 and MONARCH 3 assesses the efficacy, safety, and pharmacokinetics (PK) of abemaciclib in combination with endocrine therapy (ET) in East Asian patients with hormone receptor positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer. MONARCH 2 and MONARCH 3 are global, randomized, double-blind, phase 3 studies of abemaciclib/placebo + fulvestrant and abemaciclib/placebo + nonsteroidal aromatase inhibitor (NSAI, anastrozole or letrozole), respectively. The East Asian population comprised 212 (31.7%) of the 669 intent-to-treat (ITT) population in the MONARCH 2 trial and 144 (29.2%) of the 493 ITT patients in the MONARCH 3 trial. In the East Asian population, median progression-free survival (PFS) was significantly prolonged in the abemaciclib arm compared with placebo in both MONARCH 2 (hazard ratio [HR], 0.520; 95% confidence interval [CI], 0.362 to 0.747; P < .001; median: 21.2 vs 11.6 months) and MONARCH 3 (HR, 0.326; 95% CI, 0.200 to 0.531, P < .001; median: not reached vs 12.82 months). Diarrhea (MONARCH 2: 90%; MONARCH 3: 88%) and neutropenia (MONARCH 2: 68%; MONARCH 3: 58%) were the most frequent adverse events observed in the East Asian populations. Abemaciclib exposures and PK were similar in East Asians and the non-East Asian populations of both trials. Abemaciclib in combination with ET in the East Asian populations of MONARCH 2 and MONARCH 3 provided consistent results with the ITT populations, demonstrating improvements in efficacy with generally tolerable safety profiles for patients with HR+, HER2- advanced breast cancer
    corecore