258 research outputs found

    CN− Secondary Ions Form by Recombination as Demonstrated Using Multi-Isotope Mass Spectrometry of 13C- and 15N-Labeled Polyglycine

    Get PDF
    We have studied the mechanism of formation CN− secondary ions under Cs+ primary ion bombardment. We have synthesized 13C and 15N labeled polyglycine samples with the distance between the two labels and the local atomic environment of the 13C label systematically varied. We have measured four masses in parallel: 12C, 13C, and two of 12C14N, 13C14N, 12C15N, and 13C15N. We have calculated the 13C/12C isotope ratio, and the different combinations of the CN isotope ratios (27CN/26CN, 28CN/27CN, and 28CN/26CN). We have measured a high 13C15N − secondary ion current from the 13C and 15N labeled polyglycines, even when the 13C and 15N labels are separated. By comparing the magnitude of the varied combinations of isotope ratios among the samples with different labeling positions, we conclude the following: CN− formation is in large fraction due to recombination of C and N; the CO double bond decreases the extent of CN− formation compared to the case where carbon is singly bonded to two hydrogen atoms; and double-labeling with 13C and 15N allows us to detect with high sensitivity the molecular ion 13C15N−

    When one is sick and two need help: Caregivers’ perspectives on the negative consequences of caring

    Get PDF
    Informal or family caregivers contribute significantly to individual care, and to the Canadian healthcare system, yet receive limited support from governments, institutions, and healthcare professionals in recognition of their role, or in response to their health and social care needs – often due to the negative consequences of caregiving. Learning about the diversity of others’ experiences can positively influence personal decision-making, reduce feelings of isolation, as well as promote adjustment to a personal situation. For caregivers, however, few resources exist that provide reliable information on others’ experiences. We collected the narratives of caregivers’ experiences of caring for someone with a chronic physical illness and produced an evidence-based web resource. Through purposive variation sampling, 42 caregivers were recruited across Canada for interviews in their homes or alternate location using video/audio recording. Qualitative data analysis followed a constant comparison approach. 29 thematic pages were developed for the web site (www.healthexperiences.ca) featuring the diversity of lived experiences, and presenting topics important to the caregivers with illustrative video/audio clips, along with other sources of information. Key themes related to caregivers’ perspectives on the negative consequences of caregiving included: the impact upon personal health; challenging interactions with professionals; inconsistent information, limited support from family and friends, and unhelpful societal views. These results contribute to existing evidence of caregiver burden, but uniquely in the voices of caregivers themselves – with constructive insights for understanding the causes of ill health related to caregiving burden and for informing policy and practice

    Variation de la composition de nanoparticules de 1-10 nm obtenues par séparation de phase dans un verre de silice

    Get PDF
    National audienceLes verres contenant des nanoparticules ont de nombreuses applications industrielles, notamment grâce à leurs excellentes propriétés thermo-mécaniques [1]. Ils présentent aussi un intérêt pour les propriétés optiques. En effet, l'encapsulation d'ions luminescents (ions de terre rare par exemple) dans des nanoparticules entraînent de nouvelles propriétés de luminescence qui n'existeraient pas dans le verre hôte (bande d'émission élargie, efficacité quantique augmentée, etc) [2]. La préparation de tels verres repose sur des mécanismes de nucléation, croissance et de démixtion dont les premières étapes sont encore assez mal connues. Mais l'avènement de nouvelles techniques de caractérisation à l'échelle nanométrique permet d'améliorer notre compréhension de ces phénomènes. Par exemple, une évolution structurelle des nanoparticules à travers des phases cristallines métastables [3] ou une transformation d'un nucléus amorphe vers une nanoparticule cristalline [4] ont été observées. Des changements de composition ont aussi été rapportés pour des particules de taille 1-10 nm dans des alliages [5] et dans des métaux [6]. Dans cette présentation, nous nous intéressons à la composition de nanoparticules amorphes obtenues par séparation de phase dans un verre de silice. De telles études ont été rendues possibles grâce au développement récent de l'APT (Atom Probe Tomography) pour l'analyse des verres [7]. Nous étudions une fibre optique à base de silice préparée par le procédé MCVD (Modified Chemical Vapor Deposition). Les nanoparticules sont obtenues en incorporant du magnésium qui déclenche une séparation de phase grâce aux traitements thermiques inhérents au procédé MCVD [8]. La composition des nanoparticules dans le verre de silice dopée avec Mg, P, Ge et Er est étudiée dans la gamme 1-10 nm. Nous montrons la partition de Mg, P et Er dans ces nanoparticules ainsi qu'une modification de la composition en fonction de la taille des particules

    Particle shape dependence in 2D granular media

    Get PDF
    Particle shape is a key to the space-filling and strength properties of granular matter. We consider a shape parameter η\eta describing the degree of distortion from a perfectly spherical shape. Encompassing most specific shape characteristics such as elongation, angularity and nonconvexity, η\eta is a low-order but generic parameter that we used in a numerical benchmark test for a systematic investigation of shape-dependence in sheared granular packings composed of particles of different shapes. We find that the shear strength is an increasing function of η\eta with nearly the same trend for all shapes, the differences appearing thus to be of second order compared to η\eta. We also observe a nontrivial behavior of packing fraction which, for all our simulated shapes, increases with η\eta from the random close packing fraction for disks, reaches a peak considerably higher than that for disks, and subsequently declines as η\eta is further increased. These findings suggest that a low-order description of particle shape accounts for the principal trends of packing fraction and shear strength. Hence, the effect of second-order shape parameters may be investigated by considering different shapes at the same level of η\eta.Comment: 5 pages, 8 figure

    Distal posterior tibial artery perforator flaps for the management of calcaneal and Achilles tendon injuries in diabetic and non-diabetic patients

    Get PDF
    Management of Achilles tendon and heel area defects is a common challenge for the reconstructive surgeon due to the lack of soft tissue availability in that region. In this article, we present our experience in covering these defects by using the distal perforator propeller flaps based on the posterior tibial artery. Perforator flaps are based on cutaneous, small diameter vessels that originate from a main pedicle and perforate the fascia or muscle to reach the skin. Their development has followed the understanding of the blood supply from a source artery to the skin. Six patients (five males and one female) underwent reconstruction by using the posterior tibial artery distal perforator flap for covering defects in the distal Achilles tendon region in patients with and without diabetes mellitus. Postoperative complications included a hypertrophic scar formation in one patient, partial marginal flap necrosis in another patient, and a wound infection in a third patient. All wounds were eventually healed by the last postoperative visit. In conclusion, perforator flaps based on the distal posterior tibial artery may be a reliable option for the coverage of small to moderate size defects of the Achilles tendon and heel area regions

    Fiber Optic Dielectric Nanoparticles Characterization by Atom Probe Microscopy

    Get PDF
    International audienceThe engineered processing of dielectric nanoparticles (DNPs) in optical fibers via luminescent ion-doping of silica-based glass aims at providing an enhanced spectroscopic behavior compared to pure silica. These DNPs should positively impact applications in high power fiber lasers, light sources with new wavelengths and telecommunications. The prevalence of large phase immiscibility domains in silicate systems containing divalent metal oxides (Mg for instance) promotes the formation of DNPs through phase separation since heat treatments take place during the MCVD process. Even after 60 years of glass-ceramics research, lack of experimental data concerning early nucleation stages imposes variations in composition and heat treatments as processing steps [1]. Although classical nucleation theory was the first model proposed to explain those phenomena, growth rate mismatches remain wide. According to this capillary assumption-based model, nuclei and bulk share similar structure-composition relationship. Recent articles disprove assumption of structure, pointing toward DNPs structural changes [2] and transition from amorphous nuclei to crystalline DNPs [3]. Compositional changes for small particle sizes (~1-10 nm) have been measured in alloys with Anomalous Small Angle X-Ray Scattering (ASAXS) [4] and in steels with Atom Probe Tomography (APT) [5]. Recent developments in APT has allowed the extension of such studies to glass-ceramics [6], and in the current work, we report experimental data disproving the second capillary assumption at the early stage of nucleation-growth process. The atomic distribution map of Mg DNPs in silica-based glass doped with Mg, P, Ge and Er is reported in Figure 1 after APT analysis. In addition, quantitative assessment of Mg, P and Er content levels in DNPs smaller than 10nm in diameter (Figure 2) could refine the theories behind nucleation and growth mechanisms

    A Comparative Neuroanatomical Study of the Red Nucleus of the Cat, Macaque and Human

    Get PDF
    BACKGROUND:The human red nucleus (Nr) is comparatively less well-studied than that of cats or monkeys. Given the functional importance of reticular and midbrain structures in control of movement and locomotion as well as from an evolutionary perspective, we investigated the nature and extent of any differences in Nr projections to the olivary complex in quadrupedal and bipedal species. Using neuroanatomical tract-tracing techniques we developed a "neural sheet" hypothesis allowing us to propose how rubro-olivary relations differ among the three species. METHODS AND FINDINGS:Wheat germ agglutinin-horseradish peroxidase staining supports findings that the cat's nucleus accessories medialis of Bechtrew (NB) projects mainly to the lateral bend of the principal olive. We clarified boundaries among nucleus of Darkschewitsch (ND), NB and parvicellular red nucleus (pNr) of the cat's neural sheet. The macaque's ND-medial accessory olivary projection is rostro-caudally organized and the dorsomedial and ventrolateral parts of the macaque's pNr may project to the principal olive's rostral and caudal dorsal lamella; in cat it projects as well to pNr. Myelin- and Nissl-stained sections show that a well-developed dorsomedial part of the human Nr consists of densely packed cells, deriving small myelinated fibers that continue into the medial central tegmental tract. CONCLUSIONS:Based on these findings we suggest there are distinct bipedal-quadrupedal differences for Nr projections to the olivary complex. We propose the Nr of cats and monkeys comprise the ND, NB and pNr in a zonal sheet-like structure, retaining clear nuclear boundaries and an isolated, well-developed mNr. The human NB may be distinguished from its more specialised ND (ND lies alongside a well-developed pNr) in the human central gray. Phylogenetically, the NB may have been translocated into a roll-shaped Nr in the reticular formation, the dorsomedial portion of which might correspond to the cat's and monkey's NB

    Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders

    Get PDF
    Objective. Vertebral fractures are an under-recognized problem in children with inflammatory disorders. We studied spine health among 134 children (87 girls) with rheumatic conditions (median age 10 years) within 30 days of initiating glucocorticoid therapy. Methods. Children were categorized as follows: juvenile dermatomyositis (n = 30), juvenile idiopathic arthritis (n = 28), systemic lupus erythematosus and related conditions (n = 26), systemic arthritis (n = 22), systemic vasculitis (n = 16), and other conditions (n = 12). Thoracolumbar spine radiograph and dual x-ray absorptiometry for lumbar spine (L-spine) areal bone mineral density (BMD) were performed within 30 days of glucocorticoid initiation. Genant semiquantitative grading was used for vertebral morphometry. Second metacarpal morphometry was carried out on a hand radiograph. Clinical factors including disease and physical activity, calcium and vitamin D intake, cumulative glucocorticoid dose, underlying diagnosis, L-spine BMD Z score, and back pain were analyzed for association with vertebral fracture. Results. Thirteen vertebral fractures were noted in 9 children (7%). Of these, 6 patients had a single vertebral fracture and 3 had 2-3 fractures. Fractures were clustered in the mid-thoracic region (69%). Three vertebral fractures (23%) were moderate (grade 2); the others were mild (grade 1). For the entire cohort, mean ± SD L-spine BMD Z score was significantly different from zero (-0.55 ± 1.2, P \u3c 0.001) despite a mean height Z score that was similar to the healthy average (0.02 ± 1.0, P = 0.825). Back pain was highly associated with increased odds for fracture (odds ratio 10.6 [95% confidence interval 2.1-53.8], P = 0.004). Conclusion. In pediatric rheumatic conditions, vertebral fractures can be present prior to prolonged glucocorticoid exposure. © 2010, American College of Rheumatology

    Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: a pet study

    Get PDF
    Deep brain stimulation (DBS) of the bilateral subthalamic nucleus (STN) in Parkinson's disease is thought to produce adverse events such as emotional disorders, and in a recent study, we found fear recognition to be impaired as a result. These changes have been attributed to disturbance of the STN's limbic territory and would appear to confirm that the negative emotion recognition network passes through the STN. In addition, it is now widely acknowledged that damage to the orbitofrontal cortex (OFC), especially the right side, can result in impaired recognition of facial emotions (RFE). In this context, we hypothesized that this reduced recognition of fear is correlated with modifications in the cerebral glucose metabolism of the right OFC. The objective of the present study was first, to reinforce our previous results by demonstrating reduced fear recognition in our Parkinson's disease patient group following STN DBS and, second, to correlate these emotional performances with glucose metabolism using 18FDG-PET. The 18FDG-PET and RFE tasks were both performed by a cohort of 13 Parkinson's disease patients 3 months before and 3 months after surgery for STN DBS. As predicted, we observed a significant reduction in fear recognition following surgery and obtained a positive correlation between these neuropsychological results and changes in glucose metabolism, especially in the right OFC. These results confirm the role of the STN as a key basal ganglia structure in limbic circuits
    corecore