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Abstract – Particle shape is a key to the space-filling and strength properties of granular matter.
We consider a shape parameter η describing the degree of distortion from a perfectly spherical
shape. Encompassing most specific shape characteristics such as elongation, angularity and non-
convexity, η is a low-order but generic parameter that we used in a numerical benchmark test for a
systematic investigation of shape-dependence in sheared granular packings composed of particles
of different shapes. We find that the shear strength is an increasing function of η with nearly the
same trend for all shapes, the differences appearing thus to be of second order compared to η. We
also observe a nontrivial behavior of packing fraction which, for all our simulated shapes, increases
with η from the random close packing fraction for disks, reaches a peak considerably higher than
that for disks, and subsequently declines as η is further increased. These findings suggest that
a low-order description of particle shape accounts for the principal trends of packing fraction
and shear strength. Hence, the effect of second-order shape parameters may be investigated by
considering different shapes at the same level of η.

The hard-sphere packing is at the heart of various mod-
els for the rheology and (thermo)dynamical properties of
amorphous states of matter including liquids, glasses and
granular materials [1, 2]. Such models reflect both the
purely geometrical properties of sphere packings, e.g. the
order-disorder transition with finite volume change [3],
and emergent properties arising from collective particle in-
teractions, e.g. force chains and arching in static piles [4].
As to non-spherical particle packings, rather recent results
suggest that such packings exhibit higher shear strength
than sphere packings [5–15], and may approach unusually
high packing fractions [2, 16–18]. However, a systematic
and quantitative investigation of shape-dependence is still
largely elusive since particle shape characteristics such as

(a)Collaborative group “Changement d’Echelle dans les GEO-
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elongation, angularity, slenderness and nonconvexity are
described by distinct groups of parameters, and the effect
of each parameter is not easy to isolate experimentally.

In order to evaluate the shape-dependence of gen-
eral granular properties such as packing fraction, shear
strength and internal structure for particles of different
shapes, we designed a numerical benchmark test that was
simulated and analyzed by the members of a collabora-
tive group (CEGEO). The idea of this test is that various
non-spherical or non-circular shapes can be characterized
by their degree of distortion from a perfectly spherical or
circular shape. Let us consider an arbitrary 2D shape as
sketched in Fig. 1. The border of the particle is fully
enclosed between two concentric circles: a circumscribing
circle of radius R and an inscribed circle of radius R−∆R.
We define the η-set as the set of all shapes with borders
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∆R

R

Fig. 1: An arbitrary particle shape represented by a concentric
pair of circumscribing and inscribed circles.

enclosed between a pair of concentric circles (spheres in
3D), touching both circles and having the same ratio

η =
∆R

R
. (1)

Four different particle shapes belonging to the same η-
set are shown in Fig. 2. A non-zero value of η corresponds
to non-convexity for A-shape, elongation for B-shape, an-
gularity for C-shape, and a combination of angularity and
elongation for D-shape.

A B C D

Fig. 2: Four different shapes belonging to the same η-set with
η = 0.4: trimer (A), rounded-cap rectangle (B), truncated tri-
angle (C), and elongated hexagon (D).

B

C D

A

Fig. 3: Snapshots of the simulated packings in the densest
isotropic state for η = 0.4.

The parameter η is obviously a rough low-order shape
parameter; see also [19]. But, encompassing most spe-
cific shape parameters, it provides a general framework in
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Fig. 4: Shear strength sinϕ∗ of packings composed of various
particle shapes (see Fig. 2) as a function of η.

which shape-dependence may be analyzed among parti-
cles of very different shapes. Within an η-set, each spe-
cific shape may further be characterized by higher-order
parameters. The issue that we address in this Letter is to
what extent the packing fraction and shear strength are
controlled by η and in which respects the behavior depends
on higher-order shape parameters .

The benchmark test is based on the four shapes of Fig.
2. The A-shape (trimer) is composed of three overlapping
disks touching the circumscribing circle and with their in-
tersection points lying on the inscribed circle; the B-shape
(rounded-cap rectangle) is a rectangle touching the in-
scribed circle and juxtaposed with two half-disks touching
the circumscribing circle; the C-shape (truncated trian-
gle) is a hexagon with three sides constrained to touch the
inscribed circle and all corners on the circumscribing cir-
cle; and the D-shape (elongated hexagon) is an irregular
hexagon with two sides constrained to touch the inscribed
circle and two corners lie on the circumscribing circle. The
range of geometrically defined values of η for a given shape
(defined by a construction method) has in general a lower
bound η0. For A and B, the particle shape changes con-
tinuously from a disk, so that η0 = 0 whereas we have
η0 = 1−

√
3/2 ' 0.13 for C and D.

Two different discrete element methods (DEM) were
used for the simulations: contact dynamics (CD) and
molecular dynamics (MD). In the CD method, the par-
ticles are treated as perfectly rigid [20] whereas a linear
spring-dashpot model was used in MD simulations with
stiff particles (kn/p0 > 103, where kn is the normal stiff-
ness and p0 refers to the confining pressure) [21]. The
trimers were simulated by both methods for all values of
η. We refer below as A (for CD) and A’ (for MD) to these
simulations. The packing C was simulated by MD whereas
the packings B and D were simulated by CD. Note that
in quasi-static flow, the relaxation time of the particles is
short enough (compared to the inverse shear rate) to al-
low for efficient dissipation of kinetic energy in each time
step. For this reason, in contrast to granular gases, the
exact values of the damping parameters or restitution co-
efficients have practically no influence on the numerical
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Fig. 5: Friction mobilization in the steady state as a function
of η for different particle shapes.

data analyzed below [22].
For each shape, several packings of 5000 particles were

prepared with η varying from 0 to 0.5. To avoid long-
range ordering, a size polydispersity was introduced by
taking R in the range [Rmin, Rmax] with Rmax = 3Rmin
and a uniform distribution of particle volumes. A dense
packing composed of disks (η = 0) was first constructed by
means of random deposition in a box [23]. For other values
of η, the same packing was used with each disk serving
as the circumscribing circle. The particle was inscribed
with the desired value of η and random orientation inside
the disk. This geometrical step was followed by isotropic
compaction of the packings inside a rectangular frame.
The gravity g and friction coefficients between particles
and with the walls were set to 0 during compaction in order
to avoid force gradients. Fig. 3 displays snapshots of the
packings for η = 0.4 at the end of isotropic compaction1.

The isotropic samples were sheared by applying a slow
downward velocity on the top wall with a constant con-
fining stress acting on the lateral walls. During shear, the
friction coefficient µ between particles was set to 0.5 and
to 0 with the walls. The shear strength is characterized
by the internal angle of friction ϕ defined by

sinϕ =
σ1 − σ2
σ1 + σ2

, (2)

where the subscripts 1 and 2 refer to the principal stresses.
sinϕ increases rapidly from zero to a peak value before
relaxing to a constant material-dependent value sinϕ∗,
which defines the shear strength at large strain at a steady
stress state.

Figure 4 shows the dependence of sinϕ∗ with respect
to η for our different shapes. Remarkably, sinϕ∗ increases
with η at the same rate for all shapes. The data nearly co-
incide between the A and B shapes, on the one hand, and
between C and D shapes, on the other hand. This sug-
gests that nonconvex trimers and rounded-cap rectangles,
in spite of their very different shapes, belong to the same
family (rounded shapes). In the same way, the truncated

1Animation videos of the simulations can be found at www.cgp-
gateway.org/ref012.

0 0.1 0.2 0.3 0.4 0.5

η

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

ρ
is

o

A

A’

B

C

D

Fig. 6: Packing fraction in the isotropic state as a function of
η for different particle shapes.

triangles and elongated hexagons seem to belong to the
family of angular particles and exhibit a shear strength
slightly above that of rounded shapes. Note also that the
results are robust with respect to the numerical approach
as the packings A and A’ were simulated by two different
methods.

The increase of shear strength with η may be attributed
to the increasing frustration of particle rotations as the
shape deviates from a disk [11, 24]. Since the particles
may interact at two or three contact points (A-shape) or
through side-to-side contacts (shapes B, C and D), the
kinematic constraints increase with η and frustrate the
particle displacements by rolling. The restriction of rolling
leads to enhanced role of friction in the mechanical equilib-
rium and relative sliding of particles during deformation.
A related static quantity is the mean friction mobilization
defined by M = 〈ft/(µfn)〉, where ft is the magnitude of
the friction force, fn is the normal force, and the average
is taken over all force-bearing contacts in the system.

To evaluate the effect of particle shape, we consider the
parameter

Mη =
M(η)

M(η = 0)
− 1 (3)

as a function of η for different shapes, where M(η = 0)
is the friction mobilization for circular particles. Fig. 5
shows that Mη is a globally increasing function of η for all
shapes. The parameter η appears also in this respect to
account for the global trend of friction mobilization, and
the differences observed in Fig. 5 among different shapes
are rather of second order.

We also observe that the proportions of double and
triple contacts for A-shape packings and the proportion of
side-to-side contacts for other shapes increase with η. For
noncircular particles, one should distinguish the coordina-
tion number Z, defined as the mean number of contact-
ing neighbors per particle, from the “contact coordination
number” Zc defined as the mean number of contacts per
particle. Obviously, for the calculation of both Z and Zc
only the force-bearing contacts and non-floating particles
are taken into account [25]. We have Z = Zc ' 4 for
the disks in the initial state prepared with µ = 0. This
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(a) (b)

Fig. 7: Pore volume reduction by (a) overlap between self-
porosities; (b) steric pores.

value corresponds to an isostatic state in which one ex-
pects Z = 2Nf , where Nf is the number of degrees of
freedom of a particle [26]. For frictionless disks, we have
Nf = 2 (two translational degrees of freedom), leading to
Z = 4. For noncircular shapes, we have Nf = 3 since the
rotational degrees of freedom take part in the mechanical
equilibrium of the particles. Hence, if isostaticity holds
also for noncircular frictionless particles, we expect Z = 6.
We observe instead Z < 5 for all our packings. However,
we find Zc ' 6 for η 6= 0 if each side-to-side contact is
counted twice, representing two independent constraints.
This result is consistent with the isostatic nature of a pack-
ing of frictionless noncircular particles and shows that the
packings of noncircular shape are not under-constrained as
previously suggested [27]. For µ = 0.5, the packings are
no more isostatic and Z and Zc vary only slightly with η
with values in the range 3 to 4 for Z and in the range 4
to 5 for Zc in the course of shearing.

We now focus on the packing fraction which crucially
depends on particle shape. Fig. 6 shows the packing frac-
tion ρiso in the initial isotropic state as a function of η.
We observe a nontrivial behavior for all particle shapes:
the packing fraction increases with η, passes by a peak de-
pending on each specific shape and subsequently declines.
For the B-shape a sharp decrease of ρiso occurs beyond
η = 0.5 as was shown in [10].

This unmonotonic behavior of packing fraction was
observed by experiments and numerical simulations for
spheroids as a function of their aspect ratio [2, 16, 17, 27–
29]. The decrease of the packing fraction is attributed to
the excluded-volume effect that prevails at large aspect
ratios and leads to increasingly larger pores which cannot
be filled by the particles [28]. The observation of this un-
monotonic behavior as a function of η for different shapes
indicates that it is a generic property depending only on
deviation from circular shape. This behavior may thus be
explained from general considerations involving the pa-
rameter η but with variations depending on second-order
shape characteristics.

A plausible second-order parameter is

ν =
Vp
πR2

, (4)

where Vp is the particle volume in 2D. Its complement
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Fig. 8: Normalized packing fractions fitted by Eq. (6).

1 − ν is the “self-porosity” of a particle, i.e. the unfilled
volume fraction inside the circumscribing circle. Keeping
the radius R of the circumscribing circle constant, ρiso =
Vp/V varies with η as a result of the relative changes of
Vp and the mean volume V per particle. The free (pore)
volume per particle is Vf = V − Vp.

At η = 0, the free volume Vf is only composed of steric
voids, i.e. voids between three or more particles, and the
packing fraction is given by ρ(0) = πR2/V (0). For η > 0,
the void patterns are more complex but can be described
by considering the generic shape of particles belonging to
a given η-set. The borders of a particle involve “hills”,
which are the parts touching the circumscribing circle, and
“valleys” touching the inscribed circle. The volume V per
particle varies with η by two mechanisms. First, the hills
of a particle may partially fill the valleys of a neighboring
particle; Fig. 7(a). Secondly, the steric voids between the
hills shrink as η increases due to the increasing local curva-
ture of the touching particles; Fig. 7(b). To represent this
excess or loss of pore volume due to the specific jamming
configurations induced by particle shapes, we introduce
the function h(η) by setting

V (η) = V (η0)− πR2h(η), (5)

with h(η0) = 0. With these assumptions, the packing
fraction is expressed as

ρ(η) =
ν(η)ρ(η0)

1− h(η)ρ(η0)
. (6)

The function ν(η) is known for each shape but h(η)
needs to be estimated. A second-order polynomial ap-
proximation

h(η) = α(η − η0) + β(η − η0)2 (7)

together with Eq. 6 allows us to recover the correct trend
and to fit the data as shown in Fig. 8. The error bars
represent the variability at η0 assumed to be the same for
all other values of η. The parameter α ensures the increase
of packing fraction with η at low values of the latter and it
basically reflects the shrinkage of steric pores (Fig. 7(b))
whereas β accounts for the overlap between circumscribing
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circles (Fig. 7(a))) and is responsible for the subsequent
decrease of the packing fraction.

The fitting parameters in Fig. 8 are α ' 1.30, 1.29,
1.14, 1.17 and β ' 1.23, 1.20, 0.23, 0.20 for C, A, D and B
shapes, respectively with increasing peak value. Note that
the values of β are considerably smaller for B and D that
have an elongated aspect and for which the overlapping of
self-porosities prevails as compared to A and C for which
the shrinkage of the initial pores is more important.

In summary, our benchmark simulations show that a
low-order shape parameter η, describing deviation with
respect to circular shape, controls to a large extent both
the shear strength and packing fraction of granular me-
dia composed of noncircular particles in 2D. The shear
strength is roughly linear in η whereas the packing frac-
tion is unmonotonic. Our simple model for this unmono-
tonic behavior is consistent with the numerical data for
all shapes. It is governed by a first-order term in η for
the shrinkage of the initial steric pores and a second-order
term in η for the creation of large pores by shape-induced
steric pores. The effect of higher-order shape parameters
may be analyzed also in this framework in terms of differ-
ences in packing fraction and shear strength among various
shapes belonging to the same η-set. An interesting issue
to be addressed in future is whether a generic second-order
parameter accounting for such differences exists. Another
aspect that merits further investigation is the joint ef-
fects of size polydispersity and particle shape. The shear
strength is independent of particle size polydispersity as a
result of the capture of force chains by the class of larger
particles [30]. But the packing fraction and force and con-
tact anisotropy depend on both shape and polydispersity.
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