120 research outputs found

    Piezoelectric Phononic Plates: Retrieving the Frequency Band Structure via All-electric Experiments

    Full text link
    We propose an experimental technique based on all-electric measurements to retrieve the frequency response of a one-dimensional piezoelectric phononic crystal plate, structured periodically with millimeter-scaled metallic strips on its two surfaces. The metallic electrodes, used for the excitation of Lamb-like guided modes in the plate, ensure at the same time control of their dispersion by means of externally loaded electric circuits that offer non-destructive tunability in the frequency response of these structures. Our results, in very good agreement with finite-element numerical predictions, reveal interesting symmetry aspects that are employed to analyze the frequency band structure of such crystals. More importantly, Lamb-like guided modes interact with electric-resonant bands induced by inductance loads on the plate, whose form and symmetry are discussed and analyzed in depth, showing unprecedented dispersion characteristics.Comment: This is the version of the article before peer review or editing, as submitted by an author to Smart Materials and Structures. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1361-665X/ab4aa

    Optically tunable surfaces with trapped particles in microcavities

    Get PDF
    We introduce optically tunable surfaces based upon metallic gold nanoparticles trapped in open, water-filled gold cavities. The optical properties of the surfaces change dramatically with the presence and location of the particles inside the cavities. The precise position of the particles is shown to be controllable through optical forces exerted by external illumination, thus leading to all-optical tunability, whereby the optical response of the surfaces is tuned through externally applied light. We discuss the performance of the cavity-particle complex in detail and provide theoretical support for its application as a novel concept of a large-scale optically tunable system. © 2008 The American Physical Society.This work was supported by the Spanish MEC (NAN2004- 08843-C05-05 and MAT2007-66050) and by the EU-FP6 (NMP4-2006-016881 ‘‘SPANS’’).Peer Reviewe

    Acoustic properties of colloidal crystals

    Full text link
    We present a systematic study of the frequency band structure of acoustic waves in crystals consisting of nonoverlapping solid spheres in a fluid. We consider colloidal crystals consisting of polystyrene spheres in water, and an opal consisting of close-packed silica spheres in air. The opal exhibits an omnidirectional frequency gap of considerable width; the colloidal crystals do not. The physical origin of the bands are discussed for each case in some detail. We present also results on the transmittance of finite slabs of the above crystals.Comment: 7 pages, 9 figures, prb approve

    Resonant Visible Light Modulation with Graphene

    Get PDF
    Fast modulation and switching of light at visible and near-infrared (vis-NIR) frequencies is of utmost importance for optical signal processing and sensing technologies. No fundamental limit appears to prevent us from designing wavelength-sized devices capable of controlling the light phase and intensity at gigaherts (and even terahertz) speeds in those spectral ranges. However, this problem remains largely unsolved, despite recent advances in the use of quantum wells and phase-change materials for that purpose. Here, we explore an alternative solution based upon the remarkable electro-optical properties of graphene. In particular, we predict unity-order changes in the transmission and absorption of vis-NIR light produced upon electrical doping of graphene sheets coupled to realistically engineered optical cavities. The light intensity is enhanced at the graphene plane, and so is its absorption, which can be switched and modulated via Pauli blocking through varying the level of doping. Specifically, we explore dielectric planar cavities operating under either tunneling or Fabry-Perot resonant transmission conditions, as well as Mie modes in silicon nanospheres and lattice resonances in metal particle arrays. Our simulations reveal absolute variations in transmission exceeding 90% as well as an extinction ratio >15 dB with small insertion losses using feasible material parameters, thus supporting the application of graphene in fast electro-optics at vis-NIR frequencies.Comment: 17 pages, 13 figures, 54 reference

    Plasmon guided modes in nanoparticle metamaterials

    Get PDF
    Surface modes in nanostructured metallic metamaterial films are reported showing larger confinement than plasmons in metallic waveguides of similar dimensions, but in contrast to plasmons, the new modes have TE polarization. The metamaterial, formed by planar arrays of nearly-touching metallic nanoparticles, behaves as a high-index dielectric for the noted polarization, thus yielding well confined guided modes. Our results for silver particles in silica support a new paradigm for TE surface-wave guiding in unconnected nanostructured metallic systems complementary to TM plasmon waves in continuous metal surfaces. © 2008 Optical Society of America.This work has been supported by the Spanish MEC (NAN2004-08843-C05-05, MAT2007- 66050, and consolider NanoLight.es) and by the EU-FP6 (NMP4-2006-016881 ”SPANS”).Peer Reviewe
    corecore