55 research outputs found
Potent pro-apoptotic combination therapy is highly effective in a broad range of cancers
Primary or acquired therapy resistance is a major obstacle to the effective treatment of cancer. Resistance to apoptosis has long been thought to contribute to therapy resistance. We show here that recombinant TRAIL and CDK9 inhibition cooperate in killing cells derived from a broad range of cancers, importantly without inducing detectable adverse events. Remarkably, the combination of TRAIL with CDK9 inhibition was also highly effective on cancers resistant to both, standard-of-care chemotherapy and various targeted therapeutic approaches. Dynamic BH3 profiling revealed that, mechanistically, combining TRAIL with CDK9 inhibition induced a drastic increase in the mitochondrial priming of cancer cells. Intriguingly, this increase occurred irrespective of whether the cancer cells were sensitive or resistant to chemo- or targeted therapy. We conclude that this pro-apoptotic combination therapy has the potential to serve as a highly effective new treatment option for a variety of different cancers. Notably, this includes cancers that are resistant to currently available treatment modalities
The long term vaccine-induced anti-SARS-CoV-2 immune response is impaired in quantity and quality under TNFα blockade
The humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination in patients with chronic inflammatory disease (CID) declines more rapidly with tumor necrosis factor-α (TNF-α) inhibition. Furthermore, the efficacy of current vaccines against Omicron variants of concern (VOC) including BA.2 is limited. Alterations within immune cell populations, changes in IgG affinity, and the ability to neutralize a pre-VOC strain and the BA.2 virus were investigated in these at-risk patients. Serum levels of anti-SARS-CoV-2 IgG, IgG avidity, and neutralizing antibodies (NA) were determined in anti-TNF-α patients (n = 10) and controls (n = 24 healthy individuals; n = 12 patients under other disease-modifying antirheumatic drugs, oDMARD) before and after the second and third vaccination by ELISA, immunoblot and live virus neutralization assay. SARS-CoV-2-specific B- and T cell subsets were analysed by multicolor flow cytometry. Six months after the second vaccination, anti-SARS-CoV-2 IgG levels, IgG avidity and anti-pre-VOC NA titres were significantly reduced in anti-TNF-α recipients compared to controls (healthy individuals: avidity: p ≤ 0.0001; NA: p = 0.0347; oDMARDs: avidity: p = 0.0012; NA: p = 0.0293). The number of plasma cells was increased in anti-TNF-α patients (Healthy individuals: p = 0.0344; oDMARDs: p = 0.0254), while the absolute number of SARS-CoV-2-specific plasma cells 7 days after 2nd vaccination were comparable. Even after a third vaccination, these patients had lower anti-BA.2 NA titres compared to both other groups. We show a reduced SARS-CoV-2 neutralizing capacity in patients under TNF-α blockade. While these effects were observable after the first two vaccinations and with older VOC, the differences in responses to BA.2 were enhanced
High Speed Two-Photon Imaging of Calcium Dynamics in Dendritic Spines: Consequences for Spine Calcium Kinetics and Buffer Capacity
Rapid calcium concentration changes in postsynaptic structures are crucial for synaptic plasticity. Thus far, the determinants of postsynaptic calcium dynamics have been studied predominantly based on the decay kinetics of calcium transients. Calcium rise times in spines in response to single action potentials (AP) are almost never measured due to technical limitations, but they could be crucial for synaptic plasticity. With high-speed, precisely-targeted, two-photon point imaging we measured both calcium rise and decay kinetics in spines and secondary dendrites in neocortical pyramidal neurons. We found that both rise and decay kinetics of changes in calcium-indicator fluorescence are about twice as fast in spines. During AP trains, spine calcium changes follow each AP, but not in dendrites. Apart from the higher surface-to-volume ratio (SVR), we observed that neocortical dendritic spines have a markedly smaller endogenous buffer capacity with respect to their parental dendrites. Calcium influx time course and calcium extrusion rate were both in the same range for spines and dendrites when fitted with a dynamic multi-compartment model that included calcium binding kinetics and diffusion. In a subsequent analysis we used this model to investigate which parameters are critical determinants in spine calcium dynamics. The model confirmed the experimental findings: a higher SVR is not sufficient by itself to explain the faster rise time kinetics in spines, but only when paired with a lower buffer capacity in spines. Simulations at zero calcium-dye conditions show that calmodulin is more efficiently activated in spines, which indicates that spine morphology and buffering conditions in neocortical spines favor synaptic plasticity
Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy
<p>Abstract</p> <p>Background</p> <p>Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture.</p> <p>Methods</p> <p>Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale <it>in silico </it>image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM).</p> <p>Results</p> <p>We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates.</p> <p>Conclusion</p> <p>The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.</p
Eye bank issues: II. Preservation techniques: warm versus cold storage
Most of the tissue used for penetrating keratoplasty is issued through eye banks that store the corneoscleral button either in hypothermic storage at 2–6°C or in organ culture at 31–37°C
Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers
Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers
Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer‐reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state‐of‐the‐art handbook for basic and clinical researchers.DFG, 389687267, Kompartimentalisierung, Aufrechterhaltung und Reaktivierung humaner Gedächtnis-T-Lymphozyten aus Knochenmark und peripherem BlutDFG, 80750187, SFB 841: Leberentzündungen: Infektion, Immunregulation und KonsequenzenEC/H2020/800924/EU/International Cancer Research Fellowships - 2/iCARE-2DFG, 252623821, Die Rolle von follikulären T-Helferzellen in T-Helferzell-Differenzierung, Funktion und PlastizitätDFG, 390873048, EXC 2151: ImmunoSensation2 - the immune sensory syste
Scaling of information in large sensory neuronal populations
Individual neurons are noisy. Therefore, it seems necessary to pool the activity of many neurons to obtain an accurate representation of the environment. However, it is widely believed that shared noise in the activity of nearby neurons renders such pooling ineffective, limiting the accuracy of the population code and, ultimately, behavior. However, these predictions are based on extrapolating models fit to small numbers of neurons and have not been tested experimentally. Using a novel high-speed 3D-microscope we densely recorded from hundreds of neurons in the mouse visual cortex and measured the amount of information encoded. We find that the information in this sensory population increases approximately linearly with population size and does not saturate, even for several hundred neurons. This information growth is facilitated by a correlation structure that is not aligned with the tuning, making it less harmful than would be predicted from pairwise measurements. Accordingly, a decoder that accounts for the correlation structure outperforms one that does not. Our findings suggest that sensory representations may be more accurate than previously thought and therefore that psychophysical limitations may arise from downstream neural processes rather than limitations in the sensory encoding
- …