11 research outputs found

    A novel splice site mutation of the ATM gene associated with ataxia telangiectasia

    Get PDF
    AbstractObjective: Ataxia telangiectasia (AT) is a rare autosomal recessive disorder caused by mutation in the Ataxia telangiectasia mutated (ATM) gene. This disorder is characterized by progressive cerebellar ataxia, telangiectasia, immunodeficiency and a predisposition to leukemia/lymphoma.Methods: In this study, four members of a family including a symptomatic AT patient, his parents and sibling were examined for ATM gene defects. DNA was extracted from peripheral leukocytes and the coding regions and exon-intron boundaries of ATM gene were amplified by next generation sequencing technique. The identified mutation was tested in all members of the family.  Results: Molecular analyses identified a homozygous T to G substitution in c.7308-6 position resulting in a novel acceptor splice site in intron 49 of the ATM gene in the index patient. Parents and sibling of the proband were heterozygous for the same mutation.Conclusions: The variant c.7308-6T>G is predicted to be pathogenic due to impaired splice site causing exon skipping. This newly found frameshift mutation cosegregated as an autosomal recessive trait as expected for Ataxia telangiectasia syndrome. 

    Targeted Next-Generation Sequencing of a Deafness Gene Panel (MiamiOtoGenes) Analysis in Families Unsuitable for Linkage Analysis

    Get PDF
    Hearing loss (HL) is a common sensory disorder in humans with high genetic heterogeneity. To date, over 145 loci have been identified to cause nonsyndromic deafness. Furthermore, there are countless families unsuitable for the conventional linkage analysis. In the present study, we used a custom capture panel (MiamiOtoGenes) to target sequence 180 deafness-associated genes in 5 GJB2 negative deaf probands with autosomal recessive nonsyndromic HL from Iran. In these 5 families, we detected one reported and six novel mutations in 5 different deafness autosomal recessive (DFNB) genes (TRIOBP, LHFPL5, CDH23, PCDH15, and MYO7A). The custom capture panel in our study provided an efficient and comprehensive diagnosis for known deafness genes in small families

    Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia

    Get PDF
    The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans

    CDKN2B‐AS (rs2891168), SOD2 (rs4880), and PON1 (rs662) polymorphisms and susceptibility to coronary artery disease and type 2 diabetes mellitus in Iranian patients: A case‐control study

    No full text
    Abstract Background and Aims Coronary artery disease (CAD) is a devastating illness and primary cause of death worldwide that arises from a combination of genetic and environmental factors. Several large‐scale studies found that 9p21.3, superoxide dismutase 2 (SOD2), and paraoxonase 1 (PON1) polymorphisms increase type 2 diabetes mellitus (T2DM) and/or coronary artery disease (CAD) risk. Our research aimed to investigate whether the SNPs of the 9p21.3 locus (rs28911698), SOD2 (rs4880), and PON1 (rs662) genes were associated with the risk of T2DM and/or CAD in the Iranian population. Methods In this case‐control study four group subjects including patients with CAD non‐T2DM, with CAD and T2DM, non‐CAD with T2DM, and non‐CAD non‐T2DM were recruited to the study from 2019 to 2020. Molecular analysis was carried out by allele specific‐polymerase chain reaction (AS‐PCR) technique for rs4880, Taqman genotyping assay for rs2891168, and PCR followed by restriction fragment length polymorphism (PCR‐RFLP) technique for rs662. Results The rs2891168 polymorphism presented an elevated risk of CAD in non‐T2DM with CAD and with T2DM CAD groups compared to the non‐T2DM non‐CAD group with GG genotype and dominant model after adjustment (p < 0.05). G‐allele in PON1 rs662 polymorphism associated with increased risk of T2DM in T2DM non‐CAD, and T2DM CAD groups compared to non‐T2DM non‐CAD group with dominant model, GG and AG genotypes (p < 0.05). However, SOD2 rs4880 polymorphism presented no significant association with the development of diabetes or CAD. Conclusion These results provide a prime witness that rs2891168 and rs662 gene variants might have a possible increased risk of CAD and T2DM occurrence, respectively. To obtain more definitive and accurate results in this area, further research is required

    Targeted Next-Generation Sequencing of a Deafness Gene Panel (MiamiOtoGenes) Analysis in Families Unsuitable for Linkage Analysis

    No full text
    Hearing loss (HL) is a common sensory disorder in humans with high genetic heterogeneity. To date, over 145 loci have been identified to cause nonsyndromic deafness. Furthermore, there are countless families unsuitable for the conventional linkage analysis. In the present study, we used a custom capture panel (MiamiOtoGenes) to target sequence 180 deafness-associated genes in 5 GJB2 negative deaf probands with autosomal recessive nonsyndromic HL from Iran. In these 5 families, we detected one reported and six novel mutations in 5 different deafness autosomal recessive (DFNB) genes (TRIOBP, LHFPL5, CDH23, PCDH15, and MYO7A). The custom capture panel in our study provided an efficient and comprehensive diagnosis for known deafness genes in small families

    Genotype-phenotype correlation in Pompe disease, a step forward

    Get PDF
    Background: Pompe's disease is a progressive myopathy caused by mutations in the lysosomal enzyme acid alphaglucosidase gene (GAA). A wide clinical variability occurs also in patients sharing the same GAA mutations, even within the same family. Methods. For a large series of GSDII patients we collected some clinical data as age of onset of the disease, presence or absence of muscular pain, Walton score, 6-Minute Walking Test, Vital Capacity, and Creatine Kinase. DNA was extracted and tested for GAA mutations and some genetic polymorphisms able to influence muscle properties (ACE, ACTN3, AGT and PPAR genes). We compared the polymorphisms analyzed in groups of patients with Pompe disease clustered for their homogeneous genotype. Results: We have been able to identify four subgroups of patients completely homogeneous for their genotype, and two groups homogeneous as far as the second mutation is defined "very severe" or "potentially less severe". When disease free life was studied we observed a high significant difference between groups. The DD genotype in the ACE gene and the XX genotype in the ACTN3 gene were significantly associated to an earlier age of onset of the disease. The ACE DD genotype was also associated to the presence of muscle pain. Conclusions: We demonstrate that ACE and ACTN3 polymorphisms are genetic factors able to modulate the clinical phenotype of patients affected with Pompe disease

    Genotype-phenotype correlation in Pompe disease, a step forward

    No full text
    Background: Pompe's disease is a progressive myopathy caused by mutations in the lysosomal enzyme acid alphaglucosidase gene (GAA). A wide clinical variability occurs also in patients sharing the same GAA mutations, even within the same family. Methods. For a large series of GSDII patients we collected some clinical data as age of onset of the disease, presence or absence of muscular pain, Walton score, 6-Minute Walking Test, Vital Capacity, and Creatine Kinase. DNA was extracted and tested for GAA mutations and some genetic polymorphisms able to influence muscle properties (ACE, ACTN3, AGT and PPAR genes). We compared the polymorphisms analyzed in groups of patients with Pompe disease clustered for their homogeneous genotype. Results: We have been able to identify four subgroups of patients completely homogeneous for their genotype, and two groups homogeneous as far as the second mutation is defined "very severe" or "potentially less severe". When disease free life was studied we observed a high significant difference between groups. The DD genotype in the ACE gene and the XX genotype in the ACTN3 gene were significantly associated to an earlier age of onset of the disease. The ACE DD genotype was also associated to the presence of muscle pain. Conclusions: We demonstrate that ACE and ACTN3 polymorphisms are genetic factors able to modulate the clinical phenotype of patients affected with Pompe disease

    Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia

    No full text
    The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans

    Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents.

    No full text
    Item does not contain fulltextAlzheimer's disease (AD) is the most common form of dementia. During the recent decade, nanotechnology has been widely considered, as a promising tool, for theranosis (diagnosis and therapy) of AD. Here we first discuss pathophysiology and characteristics of AD with a focus on the amyloid cascade hypothesis. Then magnetic nanoparticles (MNPs) and recent works on their applications in AD, focusing on the superparamagnetic iron oxide nanoparticles (SPIONs), are reviewed. Furthermore, the amyloid-nanoparticle interaction is highlighted, with the scope to be highly considered by the scientists aiming for diagnostics and/or treatment of AD employing nanoparticles. Furthermore, recent findings on the "ignored" parameters (e.g., effect of protein "corona" at the surface of nanoparticles on amyloid-beta (Abeta) fibrillation process) are discussed
    corecore