49 research outputs found

    Impacto de las publicaciones en ecología química y microbiana de esponjas

    Get PDF
    It is well known that sponges constitute one of the most prevalent groups in marine benthic communities based on their challenging structural organization, abundance and diversity, and their functional roles in natural communities. The evolutionary success of this group may be explained by the close interaction between sponges and microbes, which dates back to the Precambrian era. This particular symbiosis has become a key factor within sponge research and is an emerging topic of two scientific disciplines: chemical and microbial ecology. This mini-review evaluates the influence of these two disciplines on the general scientific community using a series of bibliometric indicators to ensure objectivity. Our analyses showed that, although sponge chemical ecology has a greater overall impact on the scientific community, both disciplines are cited equally and more frequently than expected. Both research areas show a great impact on applied sciences, but the ecological perspectives of sponge chemistry and microbiology may fall outside the interests of a broader ecological audience. Moreover, we highlight some research topics (e.g. effects of environmental stress) that may require further attention. Hence, sponge chemical and microbial ecology have the opportunity to contribute to broader ecological issues in topics that make sponges particularly important, such as symbiosis.Las esponjas constituyen uno de los grupos predominantes en las comunidades bentónicas marinas gracias a su potencial organización estructural, abundancia, diversidad y a las funciones que desempeñan en las comunidades naturales. El éxito evolutivo de este grupo yace en la estrecha interacción con microorganismos que data del Precámbrico. Esta particular simbiosis se ha convertido en un factor clave en la investigación sobre esponjas y está emergiendo en dos campos como el de la ecología química y microbiana. Esta mini-revisión evalúa la influencia de estas dos disciplinas en la comunidad científica utilizando una serie de indicadores bibliométricos para asegurar la objetividad. Nuestro análisis muestra que aunque la ecología química presenta un mayor impacto global, ambos campos son citados de manera similar y con una frecuencia superior a la esperada. Ambas áreas presentan un gran impacto en ciencias aplicadas, pero las perspectivas ecológicas de las dos disciplinas científicas deben quedar fuera de los intereses generales de la comunidad de ecólogos. Además, señalamos algunas áreas (e.g. efectos del estrés ambiental) que necesitarían mayor atención. Por tanto, la ecología química y microbiana de esponjas tienen la oportunidad de contribuir sobre cuestiones de ecología general con temas que las hace particularmente relevantes, como es la simbiosis

    Host species determines symbiotic community composition in Antarctic sponges (Porifera: Demospongiae)

    Get PDF
    The microbiota of four Antarctic sponges, Dendrilla antarctica, Sphaerotylus antarcticus, Mycale acerata, and Hemigellius pilosus, collected at two South Shetland Islands and at two locations in the Antarctic Peninsula separated by ca. 670 km, were analyzed together with surrounding seawater. We used high throughput sequencing of the V4 region of the 16S rRNA gene common to Bacteria and Archaea to investigate the prokaryotic diversity and community composition. Our study reveals that sponge-associated prokaryote communities are consistently detected within a particular sponge species regardless of the collection site. Their community structure and composition are typical of low microbial abundance (LMA) sponges. We conclude that prokaryote communities from Antarctic sponges are less diverse and differ in their composition compared to those in the water column. Microbiome analysis indicates that Antarctic sponges harbor a strict core consisting of seven OTUs, and a small variable community comprising several tens of OTUs. Two abundant prokaryotes from the variable microbiota that are affiliated to the archaeal and bacterial phyla Thaumarchaeota and Nitrospirae may be involved in the sponge nitrification process and might be relevant components of the nitrogen cycling in Antarctica. The likely generalist nature of dominant microbes and the host-specific structure of symbiont communities suggest that these Antarctic sponges represent different ecological niches for particular prokaryotic enrichments

    Potential chemical defenses of Antarctic benthic organisms against marine bacteria

    Get PDF
    The continental shelf of Antarctica harbours rich suspension-feeding macroinvertebrate communities that are continuously exposed to large populations of free-living microbes. To avoid settlement or fouling by undesirable microorganisms that could cause infection or collapse filter-feeding systems, these macroinvertebrates might regulate the epibiotic microbial mat through chemical interactions. In Antarctic chemical ecology, the antibacterial roles of natural products remain mostly unknown. A necessary first step is to identify organisms that produce compounds with potential ecological relevance. For that reason, we tested the crude organic extracts of 116 taxa of Antarctic benthic organisms for antibacterial activity against a panel of seven strains of marine bacteria. Nine out of 11 phyla tested had antibacterial properties. However, inhibitory activity was quite selective and species-specific. These patterns suggest that Antarctic benthic organisms may produce diverse bioactive metabolites with different antibacterial activities or, alternatively, those contrasting profiles may be shaped by environmental and biological interactions acting at a small spatial scale. The reasons of such selectivity remain to be further investigated and may contribute to the identification of bioactive compounds with pharmaceutical applications

    Temporal Trends in the Secondary Metabolite Production of the Sponge Aplysina aerophoba

    Get PDF
    Temporal changes in the production of secondary metabolites are far from being fully understood. Our study quantified, over a two-year period, the concentrations of brominated alkaloids in the ectosome and the choanosome of Aplysina aerophoba, and examined the temporal patterns of these natural products. Based on standard curves, we quantified the concentrations of aerophobin-2, aplysinamisin-1, and isofistularin-3: three of the four major peaks obtained through chemical profiling with high-performance liquid chromatography. Our results showed a striking variation in compound abundance between the outer and inner layers of the sponge. The ectosome showed high concentrations of bromocompounds during the summer months, while the choanosome followed no pattern. Additionally, we found that, from the outer layer of the sponge, aerophobin-2 and isofistularin-3 were significantly correlated with water temperature. The present study is one of the first to document quantitative seasonal variations in individual compounds over multiple years. Further studies will clarify the role of environmental, biological, and physiological factors in determining the seasonal patterns in the concentration of brominated alkaloids

    Relevant Spatial Scales of Chemical Variation in Aplysina aerophoba

    Get PDF
    Understanding the scale at which natural products vary the most is critical because it sheds light on the type of factors that regulate their production. The sponge Aplysina aerophoba is a common Mediterranean sponge inhabiting shallow waters in the Mediterranean and its area of influence in Atlantic Ocean. This species contains large concentrations of brominated alkaloids (BAs) that play a number of ecological roles in nature. Our research investigates the ecological variation in BAs of A. aerophoba from a scale of hundred of meters to thousand kilometers. We used a nested design to sample sponges from two geographically distinct regions (Canary Islands and Mediterranean, over 2500 km), with two zones within each region (less than 50 km), two locations within each zone (less than 5 km), and two sites within each location (less than 500 m). We used high-performance liquid chromatography to quantify multiple BAs and a spectrophotometer to quantify chlorophyll a (Chl a). Our results show a striking degree of variation in both natural products and Chl a content. Significant variation in Chl a content occurred at the largest and smallest geographic scales. The variation patterns of BAs also occurred at the largest and smallest scales, but varied depending on which BA was analyzed. Concentrations of Chl a and isofistularin-3 were negatively correlated, suggesting that symbionts may impact the concentration of some of these compounds. Our results underline the complex control of the production of secondary metabolites, with factors acting at both small and large geographic scales affecting the production of multiple secondary metabolites

    Costs and benefits of automation for astronomical facilities

    Full text link
    The Observatorio Astrof\'isico de Javalambre (OAJ{\dag}1) in Spain is a young astronomical facility, conceived and developed from the beginning as a fully automated observatory with the main goal of optimizing the processes in the scientific and general operation of the Observatory. The OAJ has been particularly conceived for carrying out large sky surveys with two unprecedented telescopes of unusually large fields of view (FoV): the JST/T250, a 2.55m telescope of 3deg field of view, and the JAST/T80, an 83cm telescope of 2deg field of view. The most immediate objective of the two telescopes for the next years is carrying out two unique photometric surveys of several thousands square degrees, J-PAS{\dag}2 and J-PLUS{\dag}3, each of them with a wide range of scientific applications, like e.g. large structure cosmology and Dark Energy, galaxy evolution, supernovae, Milky Way structure, exoplanets, among many others. To do that, JST and JAST are equipped with panoramic cameras under development within the J-PAS collaboration, JPCam and T80Cam respectively, which make use of large format (~ 10k x 10k) CCDs covering the entire focal plane. This paper describes in detail, from operations point of view, a comparison between the detailed cost of the global automation of the Observatory and the standard automation cost for astronomical facilities, in reference to the total investment and highlighting all benefits obtained from this approach and difficulties encountered. The paper also describes the engineering development of the overall facilities and infrastructures for the fully automated observatory and a global overview of current status, pinpointing lessons learned in order to boost observatory operations performance, achieving scientific targets, maintaining quality requirements, but also minimizing operation cost and human resources.Comment: Global Observatory Control System GOC

    Patterns of Chemical Diversity in the Mediterranean Sponge Spongia lamella

    Get PDF
    The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern

    Microbiome structure of ecologically important bioeroding sponges (family Clionaidae): the role of host phylogeny and environmental plasticit

    Get PDF
    Este artículo contiene 14 páginas, 4 figuras, 2 tablas.The potential of increased bioerosion by excavating sponges in future environmental scenarios represents a potential threat to coral reef structure and function. Little is known about prokaryotic associations in excavating sponges despite the fact that evidence indicates they contribute to the sponge growth through their heterotrophic metabolism and may even act as microborers. Here, we provide the first detailed description of the microbial community of multiple bioeroding sponges from the Clionaidae family (Cliona varians, C. tumula, C. delitrix, Spheciospongia vesparium, Cervicornia cuspidifera) collected in inshore and offshore coral reefs in the Florida Keys. A total of 6811 prokaryote OTUs identified using 16S rRNA gene sequencing was detected in the samples studied, including ambient water, belonging to 39 bacterial phyla and 3 archaeal phyla. The microbiomes of species harboring Symbiodinium (C. varians, C. tumula, C. cuspidifera) and the azooxanthellate S. vesparium were dominated by Alphaproteobacteria that represented from 83 to 96% of total sequences. These clionaid sponges presented species-specific core microbiomes, with 4 OTUs being shared by all sponge samples, albeit with species-specific enrichments. The microbiomes of C. varians and S. vesparium were stable but showed certain plasticity between offshore and inshore reefs. The distantly related C. delitrix does not harbor Symbiodinium, and had a microbiome dominated by Gammaproteobacteria, which represented 82% of all sequences. Most of the sponge-enriched OTUs are found in low abundance and belong to the ‘rare biosphere’ category, highlighting the potential importance of these microbes in the ecology of the holobiont. Sponge microbiomes may enhance functional redundancy for the sponge holobiont and allow it to respond to shifting environments over much short time scales than evolutionary change would permit. This work establishes the basis for future research to explore how microbial shifts in bioeroding sponges contribute to bioerosion in the face of a changing environment.This work was funded by grants from the National Science Foundation (OCE-1617255 and IOS-1555440 to MH) and in part by the Spanish Government project PopCOmics CTM2017-88080 (MCIU,AEI/FEDER, UE) to XT and the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement 705464 (“SCOOBA”) to OSS.Peer reviewe
    corecore