62 research outputs found

    Pulse processing routines for neutron time-of-flight data

    Full text link
    A pulse shape analysis framework is described, which was developed for n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN. The most notable feature of this new framework is the adoption of generic pulse shape analysis routines, characterized by a minimal number of explicit assumptions about the nature of pulses. The aim of these routines is to be applicable to a wide variety of detectors, thus facilitating the introduction of the new detectors or types of detectors into the analysis framework. The operational details of the routines are suited to the specific requirements of particular detectors by adjusting the set of external input parameters. Pulse recognition, baseline calculation and the pulse shape fitting procedure are described. Special emphasis is put on their computational efficiency, since the most basic implementations of these conceptually simple methods are often computationally inefficient.Comment: 13 pages, 10 figures, 5 table

    Pulse processing routines for neutron time-of-flight data

    Get PDF
    A pulse shape analysis framework is described, which was developed for n_TOF-Phase3, the third phase in the operation of the n_TOF facility at CERN. The most notable feature of this new framework is the adoption of generic pulse shape analysis routines, characterized by a minimal number of explicit assumptions about the nature of pulses. The aim of these routines is to be applicable to a wide variety of detectors, thus facilitating the introduction of the new detectors or types of detectors into the analysis framework. The operational details of the routines are suited to the specific requirements of particular detectors by adjusting the set of external input parameters. Pulse recognition, baseline calculation and the pulse shape fitting procedure are described. Special emphasis is put on their computational efficiency, since the most basic implementations of these conceptually simple methods are often computationally inefficient.Croatian Science Foundation - Project No. 168

    Investigation of the Pu 240 (n,f) reaction at the n_TOF/EAR2 facility in the 9 meV-6 MeV range

    Get PDF
    Background: Nuclear waste management is considered amongst the major challenges in the field of nuclear energy. A possible means of addressing this issue is waste transmutation in advanced nuclear systems, whose operation requires a fast neutron spectrum. In this regard, the accurate knowledge of neutron-induced reaction cross sections of several (minor) actinide isotopes is essential for design optimization and improvement of safety margins of such systems. One such case is 240 Pu, due to its accumulation in spent nuclear fuel of thermal reactors and its usage in fast reactor fuel. The measurement of the 240 Pu (n,f) cross section was previously attempted at the CERN n_TOF facility EAR1 measuring station using the time-of-flight technique. Due to the low amount of available material and the given flux at EAR1, the measurement had to last several months to achieve a sufficient statistical accuracy. This long duration led to detector deterioration due to the prolonged exposure to the high α activity of the fission foils, therefore the measurement could not be successfully completed. Purpose: It is aimed to determine whether it is feasible to study neutron-induced fission at n_TOF/EAR2 and provide data on the 240 Pu(n,f) reaction in energy regions requested for applications. Methods: The study of the 240 Pu(n,f) reaction was made at a new experimental area (EAR2) with a shorter flight path which delivered on average 30 times higher flux at fast neutron energies. This enabled the measurement to be performed much faster, thus limiting the exposure of the detectors to the intrinsic activity of the fission foils. The experimental setup was based on microbulk Micromegas detectors and the time-of-flight data were analyzed with an optimized pulse-shape analysis algorithm. Special attention was dedicated to the estimation of the non-negligible counting loss corrections with the development of a new methodology, and other corrections were estimated via Monte Carlo simulations of the experimental setup. Results: This new measurement of the 240Pu(n,f) cross section yielded data from 9meV up to 6 MeV incident neutron energy and fission resonance kernels were extracted up to 10 keV. Conclusions: Neutron-induced fission of high activity samples can be successfully studied at the n_TOF/EAR2 facility at CERN covering a wide range of neutron energies, from thermal to a few MeV

    22^{22}Na Activation Level Measurements of Fused Silica Rods in the LHC Target Absorber for Neutrals (TAN) Compared to FLUKA Simulations

    Full text link
    The Target Absorbers for Neutrals (TANs) are located in a high-intensity radiation environment inside the tunnel of the Large Hadron Collider (LHC). TANs are positioned about 140140 m downstream from the beam interaction points. Seven 4040 cm long fused silica rods with different dopant specifications were irradiated in the TAN by the Beam RAte of Neutrals (BRAN) detector group during pp+pp data taking from 2016 to 2018 at the LHC. The peak dose delivered to the fused silica rods was 1818 MGy. We report measurements of the 22^{22}Na activation of the fused silica rods carried out at the University of Illinois at Urbana-Champaign and Argonne National Laboratory. At the end of the irradiation campaign, the maximum 22^{22}Na activity observed was A=21A=21 kBq/cm3/{\rm cm^3} corresponding to a density, ρ=2.5×1012/cm3\rho= 2.5\times 10^{12} /{\rm cm^3}, of 22^{22}Na nuclei. FLUKA Monte Carlo simulations have been performed by the CERN FLUKA team to estimate 22^{22}Na activities for the irradiated BRAN rod samples. The simulations reproduce the 22^{22}Na activity profile measured along the rods, with a 35% underestimation of the experimental measurement results.Comment: 11 pages, 14 figures, to be submitted to PRA

    Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC

    Full text link
    FASER is a proposed small and inexpensive experiment designed to search for light, weakly-interacting particles during Run 3 of the LHC from 2021-23. Such particles may be produced in large numbers along the beam collision axis, travel for hundreds of meters without interacting, and then decay to standard model particles. To search for such events, FASER will be located 480 m downstream of the ATLAS IP in the unused service tunnel TI12 and be sensitive to particles that decay in a cylindrical volume with radius R=10 cm and length L=1.5 m. FASER will complement the LHC's existing physics program, extending its discovery potential to a host of new, light particles, with potentially far-reaching implications for particle physics and cosmology. This document describes the technical details of the FASER detector components: the magnets, the tracker, the scintillator system, and the calorimeter, as well as the trigger and readout system. The preparatory work that is needed to install and operate the detector, including civil engineering, transport, and integration with various services is also presented. The information presented includes preliminary cost estimates for the detector components and the infrastructure work, as well as a timeline for the design, construction, and installation of the experiment.Comment: 82 pages, 62 figures; submitted to the CERN LHCC on 7 November 201

    Optical Transmission Characterization of Fused Silica Materials Irradiated at the CERN Large Hadron Collider

    Full text link
    The Target Absorbers for Neutrals (TANs) represent one of the most radioactive regions in the Large Hadron Collider (LHC). Seven 40 cm long fused silica rods with different dopant specifications, manufactured by Heraeus, were irradiated in one of the TANs located around the ATLAS experiment by the Beam RAte of Neutrals (BRAN) detector group. This campaign took place during the Run 2 p+p data taking, which occurred between 2016 and 2018. This paper reports a complete characterization of optical transmission per unit length of irradiated fused silica materials as a function of wavelength (240 nm - 1500 nm), dose (up to 18 MGy), and level of OH and H2_2 dopants introduced in the manufacturing process. The dose delivered to the rods was estimated using Monte Carlo simulations performed by the CERN FLUKA team.Comment: 29 pages, 15 figures, to be submitted to NIM-

    Further studies on the physics potential of an experiment using LHC neutrinos

    Get PDF
    We discuss an experiment to investigate neutrino physics at the LHC, with emphasis on tau flavour. As described in our previous paper Beni et al (2019 J. Phys. G: Nucl. Part. Phys. 46 115008), the detector can be installed in the decommissioned TI18 tunnel, ≈ 480 m downstream the ATLAS cavern, after the first bending dipoles of the LHC arc. The detector intercepts the intense neutrino flux, generated by the LHC beams colliding in IP1, at large pseudorapidity η, where neutrino energies can exceed a TeV. This paper focuses on exploring the neutrino pseudorapity versus energy phase space available in TI18 in order to optimize the detector location and acceptance for neutrinos originating at the pp interaction point, in contrast to neutrinos from pion and kaon decays. The studies are based on the comparison of simulated pp collisions at √s = 13 TeV: PYTHIA events of heavy quark (c and b) production, compared to DPMJET minimum bias events (including charm) with produced particles traced through realistic LHC optics with FLUKA. Our studies favour a configuration where the detector is positioned off the beam axis, slightly above the ideal prolongation of the LHC beam from the straight section, covering 7.4 < η < 9.2. In this configuration, the flux at high energies (0.5-1.5 TeV and beyond) is found to be dominated by neutrinos originating directly from IP1, mostly from charm decays, of which ∼50% are electron neutrinos and ∼5% are tau neutrinos. The contribution of pion and kaon decays to the muon neutrino flux is found small at those high energies. With 150 f b-1 of delivered LHC luminosity in Run 3 the experiment can record a few thousand very high energy neutrino charged current (CC) interactions and over 50 tau neutrino CC events. These events provide useful information in view of a high statistics experiment at HL-LHC. The electron and muon neutrino samples can extend the knowledge of the charm PDF to a new region of x, which is dominated by theory uncertainties. The tau neutrino sample can provide first experience on reconstruction of tau neutrino events in a very boosted regime

    FACET : a new long-lived particle detector in the very forward region of the CMS experiment

    Get PDF
    We describe a proposal to add a set of very forward detectors to the CMS experiment for the high-luminosity era of the Large Hadron Collider to search for beyond the standard model long-lived particles, such as dark photons, heavy neutral leptons, axion-like particles, and dark Higgs bosons. The proposed subsystem is called FACET for Forward-Aperture CMS ExTension, and will be sensitive to any particles that can penetrate at least 50 m of magnetized iron and decay in an 18 m long, 1 m diameter vacuum pipe. The decay products will be measured in detectors using identical technology to the planned CMS Phase-2 upgrade.Peer reviewe

    Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons

    Get PDF
    © SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio
    corecore