27 research outputs found

    Potential degradation of norfloxacin using UV-C/Fe2+/peroxides-based oxidative pathways

    Get PDF
    The removal of norfloxacin (NOR), a widely used pharmaceutical and emerging water pollutant, was studied using UV-C and Fe2+ catalyzed peroxides-based oxidative processes (e.g., UV-C/Fe2+/H2O2, UV-C/Fe2+/S2O8 2− and UV-C/Fe2+/HSO5 −) and compared with UV-C and UV-C/Fe2+. The UV-C and UV-C/Fe2+ degraded NOR to 38 and 55%. However, use of peroxides, i.e., H2O2, S2O8 2−, HSO5 − with UV-C and UV-C/Fe2+ promoted NOR %degradation to 75, 83, and 90% using [peroxides]0 = 50 mg/L, [Fe2+]0 = 1 mg/L, and [NOR]0 = 10 mg/L, respectively. The significant impact of peroxides on NOR degradation was due to their decomposition into ●OH and SO4 ●− which showed high activity towards NOR degradation. The ●OH and SO4 ●− formation from peroxides decomposition and their contribution in NOR degradation was verified by different scavenger studies. Among the UV-C/Fe2+/peroxides processes, UV-C/Fe2+/HSO5 − showed better performance. The changing concentrations of peroxides, Fe2+, and NOR affected degradation of NOR. The use of different pH and inorganic anions also influenced NOR degradation. The degradation pathways of NOR were established and analyzed acute as well as chronic toxicities of NOR and its DPs

    Ester to amide substitution improves selectivity, efficacy and kinetic behavior of a benzodiazepine positive modulator of GABA(A) receptors containing the alpha 5 subunit

    Get PDF
    We have synthesized and characterized MP-III-022 ((R)-8-ethynyl 6 (2 fluorophenyl)-N,4-dimethyl4H-benzo[f]imidazo[1,5-alpha][1,4]diazepine-3-carboxamide) in vitro and in vivo as a binding- and efficacy selective positive allosteric modulator of GABA(A) receptors containing the alpha 5 subunit (alpha 5GABA(A)Rs). By approximation of the electrophysiological responses which the estimated free rat brain concentrations can induce, we demonstrated that convenient systemic administration of MP-III-022 in the dose range 110 mg/kg may result in a selective potentiation, over a wide range from mild to moderate to strong, of alpha 5 beta gamma 2 GABA(A) receptors. For eliciting a comparable range of potentiation, the widely studied parent ligand SH-053-2'F-R-CH3 containing an ester moiety needs to be administered over a much wider dose range (10-200 mg/kg), but at the price of activating non-alpha 5 GABA(A)Rs as well as the desired alpha 5GABA(A)Rs at the highest dose. At the dose of 10 mg/kg, which elicits a strong positive modulation of alpha 5GABA(A)Rs, MP-III-022 caused mild, but significant muscle relaxation, while at doses 1-10 mg/kg was devoid of ataxia, sedation or an influence on the anxiety level, characteristic for non-selective benzodiazepines. As an amide compound with improved stability and kinetic properties, MP-III-022 may represent an optimized tool to study the influence of alpha 5GABA(A)Rs on the neuronal pathways related to CNS disorders such as schizophrenia, Alzheimer's disease, Down syndrome or autism

    Life-long impairment of glucose homeostasis upon prenatal exposure to psychostimulants

    Get PDF
    Maternal drug abuse during pregnancy is a rapidly escalating societal problem. Psychostimulants, including amphetamine, cocaine, and methamphetamine, are amongst the illicit drugs most commonly consumed by pregnant women. Neuropharmacology concepts posit that psychostimulants affect monoamine signaling in the nervous system by their affinities to neurotransmitter reuptake and vesicular transporters to heighten neurotransmitter availability extracellularly. Exacerbated dopamine signaling is particularly considered as a key determinant of psychostimulant action. Much less is known about possible adverse effects of these drugs on peripheral organs, and if in utero exposure induces lifelong pathologies. Here, we addressed this question by combining human RNA-seq data with cellular and mouse models of neuroendocrine development. We show that episodic maternal exposure to psychostimulants during pregnancy coincident with the intrauterine specification of pancreatic beta cells permanently impairs their ability of insulin production, leading to glucose intolerance in adult female but not male offspring. We link psychostimulant action specifically to serotonin signaling and implicate the sex-specific epigenetic reprogramming of serotonin-related gene regulatory networks upstream from the transcription factor Pet1/Fev as determinants of reduced insulin production.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden
    corecore