15 research outputs found

    Dust emission, extinction, and scattering in LDN 1642

    Get PDF

    Correlation of gas dynamics and dust in the evolved filament G82.65-02.00

    Get PDF
    Context. The combination of line and continuum observations can provide vital insight into the formation and fragmentation of filaments and the initial conditions for star formation. We have carried out line observations to map the kinematics of an evolved, actively star forming filament G82.65-2.00. The filament was first identified from the Planck data as a region of particularly cold dust emission and was mapped at 100-500 mu m as a part of the Herschel key program Galactic Cold Cores. The Herschel observations cover the central part of the filament, corresponding to a filament length of similar to 12 pc at the assumed distance of 620 pc.& para;& para;Aims. CO observations show that the filament has an intriguing velocity field with several velocity components around the filament. In this paper, we study the velocity structure in detail, to quantify possible mass accretion rate onto the filament, and study the masses of the cold cores located in the filament.& para;& para;Methods. We have carried out line observations of several molecules, including CO isotopologues, HCO+, HCN, and CS with the Osaka 1.85 m telescope and the Nobeyama 45 m telescope. The spectral line data are used to derive velocity and column density information.& para;& para;Results. The observations reveal several velocity components in the field, with strongest line emission concentrated to velocity range similar to[3,5] km s(-1). The column density of molecular hydrogen along the filament varies from 1.0 to 2.3 x 10(22) cm(2). We have examined six cold clumps from the central part of the filament. The clumps have masses in the range 10-20 M circle dot (similar to 70 M circle dot in total) and are close to or above the virial mass. Furthermore, the main filament is heavily fragmented and most of the substructures have a mass lower than or close to the virial mass, suggesting that the filament is dispersing as a whole. Position-velocity maps of (CO)-C-12 and (CO)-C-13 lines indicate that at least one of the striations is kinematically connected to two of the clumps, potentially indicating mass accretion from the striation onto the main filament. We tentatively estimate the accretion rate to be M = 2.23 x 10(-6) M circle dot/yr.& para;& para;Conclusions. Our line observations have revealed two or possibly three velocity components connected to the filament G82.65-2.00 and putative signs of mass accretion onto the filament. The line observations combined with Herschel and WISE maps suggest a possible collision between two cloud components.Peer reviewe

    A pulsation analysis of K2 observations of the subdwarf B star PG 1142-037 during Campaign 1 : A subsynchronously rotating ellipsoidal variable

    Get PDF
    We report a new subdwarf B pulsator, PG 1142-037, discovered during the first full-length campaign of K2, the two-gyro mission of the Kepler space telescope. 14 periodicities have been detected between 0.9 and 2.5 hr with amplitudes below 0.35 parts-per-thousand. We have been able to associate all of the pulsations with low-degree, 1Peer reviewe

    Correlation of gas dynamics and dust in the evolved filament G82.65-02.00

    Get PDF
    Context. The combination of line and continuum observations can provide vital insight into the formation and fragmentation of filaments and the initial conditions for star formation. We have carried out line observations to map the kinematics of an evolved, actively star forming filament G82.65-2.00. The filament was first identified from the Planck data as a region of particularly cold dust emission and was mapped at 100-500 mu m as a part of the Herschel key program Galactic Cold Cores. The Herschel observations cover the central part of the filament, corresponding to a filament length of similar to 12 pc at the assumed distance of 620 pc.& para;& para;Aims. CO observations show that the filament has an intriguing velocity field with several velocity components around the filament. In this paper, we study the velocity structure in detail, to quantify possible mass accretion rate onto the filament, and study the masses of the cold cores located in the filament.& para;& para;Methods. We have carried out line observations of several molecules, including CO isotopologues, HCO+, HCN, and CS with the Osaka 1.85 m telescope and the Nobeyama 45 m telescope. The spectral line data are used to derive velocity and column density information.& para;& para;Results. The observations reveal several velocity components in the field, with strongest line emission concentrated to velocity range similar to[3,5] km s(-1). The column density of molecular hydrogen along the filament varies from 1.0 to 2.3 x 10(22) cm(2). We have examined six cold clumps from the central part of the filament. The clumps have masses in the range 10-20 M circle dot (similar to 70 M circle dot in total) and are close to or above the virial mass. Furthermore, the main filament is heavily fragmented and most of the substructures have a mass lower than or close to the virial mass, suggesting that the filament is dispersing as a whole. Position-velocity maps of (CO)-C-12 and (CO)-C-13 lines indicate that at least one of the striations is kinematically connected to two of the clumps, potentially indicating mass accretion from the striation onto the main filament. We tentatively estimate the accretion rate to be M = 2.23 x 10(-6) M circle dot/yr.& para;& para;Conclusions. Our line observations have revealed two or possibly three velocity components connected to the filament G82.65-2.00 and putative signs of mass accretion onto the filament. The line observations combined with Herschel and WISE maps suggest a possible collision between two cloud components

    Multi-scale analysis of the Monoceros OB 1 star-forming region I. The dense core population

    Get PDF
    Context. Current theories and models attempt to explain star formation globally, from core scales to giant molecular cloud scales. A multi-scale observational characterisation of an entire molecular complex is necessary to constrain them. We investigate star formation in G202.3+2.5, a∼10 × 3 pc sub-region of the Monoceros OB1 cloud with a complex morphology that harbours interconnected filamentary structures. Aims. We aim to connect the evolution of cores and filaments in G202.3+2.5 with the global evolution of the cloud and to identify the engines of the cloud dynamics. Methods. In this first paper, the star formation activity is evaluated by surveying the distributions of dense cores and protostars and their evolutionary state, as characterised using both infrared observations from the Herschel and WISE telescopes and molecular line observations with the IRAM 30 m telescope. Results. We find ongoing star formation in the whole cloud, with a local peak in star formation activity around the centre of G202.3+2.5, where a chain of massive cores (10−50 M) forms a massive ridge (>150 M). All evolutionary stages from starless cores to Class II protostars are found in G202.3+2.5, including a possibly starless and massive (52 M) core, which presents a high column density (8 × 1022 cm−2). Conclusions. All the core-scale observables we examined point to an enhanced star formation activity that is centred on the junction between the three main branches of the ramified structure of G202.3+2.5. This suggests that the increased star formation activity results from the convergence of these branches. To further investigate the origin of this enhancement, it is now necessary to extend the analysis to larger scales in order to examine the relationship between cores, filaments, and their environment. We address these points through the analysis of the dynamics of G202.3+2.5 in a joint paper

    Multi-scale analysis of the Monoceros OB 1 star-forming region : I. The dense core population

    Get PDF
    Context. Current theories and models attempt to explain star formation globally, from core scales to giant molecular cloud scales. A multi-scale observational characterisation of an entire molecular complex is necessary to constrain them. We investigate star formation in G202.3+2.5, a ̃10 × 3 pc sub-region of the Monoceros OB1 cloud with a complex morphology that harbours interconnected filamentary structures. Aims: We aim to connect the evolution of cores and filaments in G202.3+2.5 with the global evolution of the cloud and to identify the engines of the cloud dynamics. Methods: In this first paper, the star formation activity is evaluated by surveying the distributions of dense cores and protostars and their evolutionary state, as characterised using both infrared observations from the Herschel and WISE telescopes and molecular line observations with the IRAM 30 m telescope. Results: We find ongoing star formation in the whole cloud, with a local peak in star formation activity around the centre of G202.3+2.5, where a chain of massive cores (10 - 50 M☉) forms a massive ridge (≳150 M☉). All evolutionary stages from starless cores to Class II protostars are found in G202.3+2.5, including a possibly starless and massive (52 M☉) core, which presents a high column density (8 × 1022 cm-2). Conclusions: All the core-scale observables we examined point to an enhanced star formation activity that is centred on the junction between the three main branches of the ramified structure of G202.3+2.5. This suggests that the increased star formation activity results from the convergence of these branches. To further investigate the origin of this enhancement, it is now necessary to extend the analysis to larger scales in order to examine the relationship between cores, filaments, and their environment. We address these points through the analysis of the dynamics of G202.3+2.5 in a joint paper.Context. Current theories and models attempt to explain star formation globally, from core scales to giant molecular cloud scales. A multi-scale observational characterisation of an entire molecular complex is necessary to constrain them. We investigate star formation in G202.3+2.5, a similar to 10 x 3 pc sub-region of the Monoceros OB1 cloud with a complex morphology that harbours interconnected filamentary structures. Aims. We aim to connect the evolution of cores and filaments in G202.3+2.5 with the global evolution of the cloud and to identify the engines of the cloud dynamics. Methods. In this first paper, the star formation activity is evaluated by surveying the distributions of dense cores and protostars and their evolutionary state, as characterised using both infrared observations from the Herschel and WISE telescopes and molecular line observations with the IRAM 30 m telescope. Results. We find ongoing star formation in the whole cloud, with a local peak in star formation activity around the centre of G202.3+2.5, where a chain of massive cores (10 50 M-circle dot) forms a massive ridge (greater than or similar to 150 M-circle dot). All evolutionary stages from starless cores to Class II protostars are found in G202.3+2.5, including a possibly starless and massive (52 M-circle dot) core, which presents a high column density (8 x 10(22) cm(-2)). Conclusions. All the core-scale observables we examined point to an enhanced star formation activity that is centred on the junction between the three main branches of the ramified structure of G202.3+2.5. This suggests that the increased star formation activity results from the convergence of these branches. To further investigate the origin of this enhancement, it is now necessary to extend the analysis to larger scales in order to examine the relationship between cores, filaments, and their environment. We address these points through the analysis of the dynamics of G202.3+2.5 in a joint paper.Peer reviewe

    Multi-scale analysis of the Monoceros OB 1 star-forming region : II. Colliding filaments in the Monoceros OB1 molecular cloud

    Get PDF
    Context. We started a multi-scale analysis of star formation in G202.3+2.5, an intertwined filamentary sub-region of the Monoceros OB1 molecular complex, in order to provide observational constraints on current theories and models that attempt to explain star formation globally. In the first paper (Paper I), we examined the distributions of dense cores and protostars and found enhanced star formation activity in the junction region of the filaments. Aims. In this second paper, we aim to unveil the connections between the core and filament evolutions, and between the filament dynamics and the global evolution of the cloud. Methods. We characterise the gas dynamics and energy balance in different parts of G202.3+2.5 using infrared observations from the Herschel and WISE telescopes and molecular tracers observed with the IRAM 30-m and TRAO 14-m telescopes. The velocity field of the cloud is examined and velocity-coherent structures are identified, characterised, and put in perspective with the cloud environment. Results. Two main velocity components are revealed, well separated in radial velocities in the north and merged around the location of intense N2H+ emission in the centre of G202.3+2.5 where Paper I found the peak of star formation activity. We show that the relative position of the two components along the sightline, and the velocity gradient of the N2H+ emission imply that the components have been undergoing collision for similar to 10(5) yr, although it remains unclear whether the gas moves mainly along or across the filament axes. The dense gas where N2H+ is detected is interpreted as the compressed region between the two filaments, which corresponds to a high mass inflow rate of similar to 1 x 10(-3) M-circle dot yr(-1) and possibly leads to a significant increase in its star formation efficiency. We identify a protostellar source in the junction region that possibly powers two crossed intermittent outflows. We show that the HII region around the nearby cluster NCG 2264 is still expanding and its role in the collision is examined. However, we cannot rule out the idea that the collision arises mostly from the global collapse of the cloud. Conclusions. The (sub-)filament-scale observables examined in this paper reveal a collision between G202.3+2.5 sub-structures and its probable role in feeding the cores in the junction region. To shed more light on this link between core and filament evolutions, one must characterise the cloud morphology, its fragmentation, and magnetic field, all at high resolution. We consider the role of the environment in this paper, but a larger-scale study of this region is now necessary to investigate the scenario of a global cloud collapse.Peer reviewe

    Magnetic Fields in the Infrared Dark Cloud G34.43+0.24

    Get PDF
    We present the B-fields mapped in IRDC G34.43+0.24 using 850 mu m polarized dust emission observed with the POL-2 instrument at the James Clerk Maxwell telescope. We examine the magnetic field geometries and strengths in the northern, central, and southern regions of the filament. The overall field geometry is ordered and aligned closely perpendicular to the filament's main axis, particularly in regions containing the central clumps MM1 and MM2, whereas MM3 in the north has field orientations aligned with its major axis. The overall field orientations are uniform at large (POL-2 at 14 '' and SHARP at 10 '') to small scales (TADPOL at 2 ''.5 and SMA at 1 ''.5) in the MM1 and MM2 regions. SHARP/CSO observations in MM3 at 350 mu m from Tang et al. show a similar trend as seen in our POL-2 observations. TADPOL observations demonstrate a well-defined field geometry in MM1/MM2 consistent with MHD simulations of accreting filaments. We obtained a plane-of-sky magnetic field strength of 470 +/- 190 mu G, 100 +/- 40 mu G, and 60 +/- 34 mu G in the central, northern, and southern regions of G34, respectively, using the updated Davis-Chandrasekhar-Fermi relation. The estimated value of field strength, combined with column density and velocity dispersion values available in the literature, suggests G34 to be marginally critical with criticality parameter lambda values 0.8 +/- 0.4, 1.1 +/- 0.8, and 0.9 +/- 0.5 in the central, northern, and southern regions, respectively. The turbulent motions in G34 are sub-AlfvEnic with Alfvenic Mach numbers of 0.34 +/- 0.13, 0.53 +/- 0.30, and 0.49 +/- 0.26 in the three regions. The observed aligned B-fields in G34.43+0.24 are consistent with theoretical models suggesting that B-fields play an important role in guiding the contraction of the cloud driven by gravity.Peer reviewe
    corecore