87 research outputs found

    Small room for compromise between oil palm cultivation and primate conservation in Africa

    Get PDF
    Despite growing awareness about its detrimental effects on tropical biodiversity, land conversion to oil palm continues to increase rapidly as a consequence of global demand, profitability, and the income opportunity it offers to producing countries. Although most industrial oil palm plantations are located in Southeast Asia, it is argued that much of their future expansion will occur in Africa. We assessed how this could affect the continent's primates by combining information on oil palm suitability and current land use with primate distribution, diversity, and vulnerability. We also quantified the potential impact of large-scale oil palm cultivation on primates in terms of range loss under different expansion scenarios taking into account future demand, oil palm suitability, human accessibility, carbon stock, and primate vulnerability. We found a high overlap between areas of high oil palm suitability and areas of high conservation priority for primates. Overall, we found only a few small areas where oil palm could be cultivated in Africa with a low impact on primates (3.3 Mha, including all areas suitable for oil palm). These results warn that, consistent with the dramatic effects of palm oil cultivation on biodiversity in Southeast Asia, reconciling a large-scale development of oil palm in Africa with primate conservation will be a great challenge

    Multi-Season Phenology Mapping of Nile Delta Croplands Using Time Series of Sentinel-2 and Landsat 8 Green LAI

    Get PDF
    Space-based cropland phenology monitoring substantially assists agricultural managing practices and plays an important role in crop yield predictions. Multitemporal satellite observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or by deriving biophysical variables. The Nile Delta represents about half of all agricultural lands of Egypt. In this region, intensifying farming systems are predominant and multi-cropping rotations schemes are increasing, requiring a high temporal and spatial resolution monitoring for capturing successive crop growth cycles. This study presents a workflow for cropland phenology characterization and mapping based on time series of green Leaf Area Index (LAI) generated from NASA’s Harmonized Landsat 8 (L8) and Sentinel-2 (S2) surface reflectance dataset from 2016 to 2019. LAI time series were processed for each satellite dataset, which were used separately and combined to identify seasonal dynamics for a selection of crop types (wheat, clover, maize and rice). For the combination of L8 with S2 LAI products, we proposed two time series smoothing and fitting methods: (1) the Savitzky–Golay (SG) filter and (2) the Gaussian Processes Regression (GPR) fitting function. Single-sensor and L8-S2 combined LAI time series were used for the calculation of key crop Land Surface Phenology (LSP) metrics (start of season, end of season, length of season), whereby the detection of cropland growing seasons was based on two established threshold methods, i.e., a seasonal or a relative amplitude value. Overall, the developed phenology extraction scheme enabled identifying up to two successive crop cycles within a year, with a superior performance observed for the seasonal than for the relative threshold method, in terms of consistency and cropland season detection capability. Differences between the time series collections were analyzed by comparing the phenology metrics per crop type and year. Results suggest that L8-S2 combined LAI data streams with GPR led to a more precise detection of the start and end of growing seasons for most crop types, reaching an overall detection of 74% over the total planted crops versus 69% with S2 and 63% with L8 alone. Finally, the phenology mapping allowed us to evaluate the spatial and temporal evolution of the croplands over the agroecosystem in the Nile Delta.E.A. was supported by the predoctoral scholarship, grant number ACIF/2019/187, funded by the Generalitat Valenciana and co-funded by the European Social Fund. J.V. and S.B. were supported by the European Research Council (ERC) under the ERC-2017-STG SENTIFLEX project, grant number 755617. J.V. was additionally supported by a Ramón y Cajal Contract (Spanish Ministry of Science, Innovation and Universities). S.B. was additionally supported by the Generalitat Valenciana SEJIGENT program (SEJIGENT/2021/001) and European Union—NextGenerationEU (ZAMBRANO 21-04)

    Mapping orangutan habitat and agricultural areas using Landsat OLI imagery augmented with unmanned aircraft system aerial photography

    Get PDF
    Conservation of the Sumatran orangutans’ (Pongo abelii) habitat is threatened by change in land use/land cover (LULCC), due to the logging of its native primary forest habitat, and the primary forest conversion to oil palm, rubber tree, and coffee plantations. Frequent LULCC monitoring is vital to rapid conservation interventions. Due to the costs of high-resolution satellite imagery, researchers are forced to rely on cost-free sources (e.g. Landsat), those, however, provide images at a moderate-to-low resolution (e.g. 15–250 m), permitting identification only general LULC classes, and limit the detection of small-scale deforestation or degradation. Here, we combine Landsat imagery with very high-resolution imagery obtained from an unmanned aircraft system (UAS). ​The UAS imagery was used as ‘drone truthing’ data to train image classification algorithms. Our results show that UAS data can successfully be used to help discriminate similar land-cover/use classes (oil palm plantation vs. reforestation vs. logged forest) with consistently high identification of over 75% on the generated thematic map, where the oil palm detection rate was as high as 89%. Because UAS is employed increasingly in conservation projects, this approach can be used in a large variety of them to improve land-cover classification or aid-specific mapping needs

    A simple remote sensing based information system for monitoring sites of conservation importance

    Get PDF
    Monitoring is essential for conservation of sites, but capacity to undertake it in the field is often limited. Data collected by remote sensing has been identified as a partial solution to this problem, and is becoming a feasible option, since increasing quantities of satellite data in particular are becoming available to conservationists. When suitably classified, satellite imagery can be used to delineate land cover types such as forest, and to identify any changes over time. However, the conservation community lacks (a) a simple tool appropriate to the needs for monitoring change in all types of land cover (e.g. not just forest), and (b) an easily accessible information system which allows for simple land cover change analysis and data sharing to reduce duplication of effort. To meet these needs, we developed a web-based information system which allows users to assess land cover dynamics in and around protected areas (or other sites of conservation importance) from multi-temporal medium resolution satellite imagery. The system is based around an open access toolbox that pre-processes and classifies Landsat-type imagery, and then allows users to interactively verify the classification. These data are then open for others to utilize through the online information system. We first explain imagery processing and data accessibility features, and then demonstrate the toolbox and the value of user verification using a case study on Nakuru National Park, Kenya. Monitoring and detection of disturbances can support implementation of effective protection, assist the work of park managers and conservation scientists, and thus contribute to conservation planning, priority assessment and potentially to meeting monitoring needs for Aichi target 11

    First Results From the Phenology-Based Synthesis Classifier Using Landsat 8 Imagery

    Get PDF
    A fully automatic phenology-based synthesis (PBS) classification algorithm was developed to map land cover based on medium spatial resolution satellite data using the Google Earth Engine cloud computing platform. Vegetation seasonality, particularly in the tropical dry regions, can lead conventional algorithms based on a single date image classification to "misclassify" land cover types, as the selected date might reflect only a particular stage of the natural phenological cycle. The PBS classifier operates with occurrence rules applied to a selection of single date image classifications of the study area to assign the most appropriate land cover class. Since the launch of Landsat 8 in 2013, it has been possible to acquire imagery at any point on the Earth every 16 days with exceptional radiometric quality. The relatively high global acquisition frequency and the open data policy allow near-real-time land cover mapping and monitoring with automated tools such as the PBS classifier. We mapped four protected areas and their 20-km buffer zones from different ecoregions in Sub-Saharan Africa using the PBS classifier to present its first results. Accuracy assessment was carried out through a visual interpretation of very high resolution images using a Web geographic information system interface. The combined overall accuracy was over 90%, which demonstrates the potential of the classifier and the power of cloud computing in geospatial sciences

    Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology

    Get PDF
    Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite- borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring.JRC.H.5-Land Resources Managemen

    Addressing the need for improved land cover map products for policy support

    Get PDF
    The continued increase of anthropogenic pressure on the Earth’s ecosystems is degrading the natural environment and then decreasing the services it provides to humans. The type, quantity, and quality of many of those services are directly connected to land cover, yet competing demands for land continue to drive rapid land cover change, affecting ecosystem services. Accurate and updated land cover information is thus more important than ever, however, despite its importance, the needs of many users remain only partially attended. A key underlying reason for this is that user needs vary widely, since most current products – and there are many available – are produced for a specific type of end user, for example the climate modelling community. With this in mind we focus on the need for flexible, automated processing approaches that support on-demand, customized land cover products at various scales. Although land cover processing systems are gradually evolving in this direction there is much more to do and several important challenges must be addressed, including high quality reference data for training and validation and even better access to satellite data. Here, we 1) present a generic system architecture that we suggest land cover production systems evolve towards, 2) discuss the challenges involved, and 3) propose a step forward. Flexible systems that can generate on-demand products that match users’ specific needs would fundamentally change the relationship between users and land cover products – requiring more government support to make these systems a reality

    Addressing the need for improved land cover map products for policy support

    Get PDF
    CITATION: Szantoi, Z. et al. 2020. Addressing the need for improved land cover map products for policy support. Environmental Science & Policy, 12:28-35, doi:10.1016/j.envsci.2020.04.005.The original publication is available at https://www.sciencedirect.comThe continued increase of anthropogenic pressure on the Earth’s ecosystems is degrading the natural environment and then decreasing the services it provides to humans. The type, quantity, and quality of many of those services are directly connected to land cover, yet competing demands for land continue to drive rapid land cover change, affecting ecosystem services. Accurate and updated land cover information is thus more important than ever, however, despite its importance, the needs of many users remain only partially attended. A key underlying reason for this is that user needs vary widely, since most current products – and there are many available – are produced for a specific type of end user, for example the climate modelling community. With this in mind we focus on the need for flexible, automated processing approaches that support on-demand, customized land cover products at various scales. Although land cover processing systems are gradually evolving in this direction there is much more to do and several important challenges must be addressed, including high quality reference data for training and validation and even better access to satellite data. Here, we 1) present a generic system architecture that we suggest land cover production systems evolve towards, 2) discuss the challenges involved, and 3) propose a step forward. Flexible systems that can generate on-demand products that match users’ specific needs would fundamentally change the relationship between users and land cover products – requiring more government support to make these systems a reality.Publisher's versio
    • …
    corecore