
Citation: van Wesemael, B.;

Chabrillat, S.; Sanz Dias, A.; Berger,

M.; Szantoi, Z. Remote Sensing for

Soil Organic Carbon Mapping and

Monitoring. Remote Sens. 2023, 15,

3464. https://doi.org/10.3390/

rs15143464

Received: 30 June 2023

Accepted: 4 July 2023

Published: 9 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Editorial

Remote Sensing for Soil Organic Carbon Mapping
and Monitoring
Bas van Wesemael 1,* , Sabine Chabrillat 2,3 , Adrian Sanz Dias 4, Michael Berger 5 and Zoltan Szantoi 5,6

1 Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
2 Helmholtz Centre Potsdam, GFZ German Research Center for Geosciences, Telegrafenberg,

14473 Potsdam, Germany; chabri@gfz-potsdam.de
3 Institute of Soil Science, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
4 GMV, Innovating Solutions, Santiago Grisolía, 4, P.T.M. Tres Cantos, 28760 Madrid, Spain; adsanz@gmv.com
5 Centre for Earth Observation (ESA-ESRIN) European Space Agency, Largo Galileo Galilei 1,

00044 Frascati, Italy; zoltan.szantoi@esa.int (Z.S.)
6 Department of Geography & Environmental Studies, Stellenbosch University, Stellenbosch 7602, South Africa
* Correspondence: bas.vanwesemael@uclouvain.be

Remote sensing soil properties in a coherent manner is now feasible from regional
to global scales. As the change in soil organic carbon (SOC) over time is an important
indicator of soil health and for CO2 sequestration, the determination and mapping of SOC
content from optical Earth observation sensors is currently an area of rigorous research.
An example of this increased interest is the pre-operational Soil Monitoring System de-
veloped in the WorldSoils project, financed by the European Space Agency (ESA contract
no. 400131273/20/I-NB), that aims at providing yearly estimations of SOC at a European
scale. Within this framework, our Special Issue aims to highlight the latest developments
in remote sensing of SOC and contains 15 contributions ranging from reviews to the appli-
cations of SOC prediction using satellite imagery, proximal or laboratory spectroscopy, and
the use of SOC maps as an indicator of soil degradation.

Three reviews highlight the historic and recent trends in this rapidly evolving topic.
Tziolas et al. [1] focus on such achievements over the 2019–2021 period. They provide in-
sight into the latest trends concerning the use of artificial intelligence techniques, the efforts
undertaken to share harmonised datasets, the need for data fusion, and the continuous ef-
forts undertaken to increase the resolution of and the inherent processing requirements for
the wealth of Earth observation data. Vaudour et al. [2] focus on satellite-based spectral ap-
proaches for SOC assessment used during the last decade. They review the pre-processing
and modelling approaches, highlight the need for bare soil conditions and recommend
focusing on temporal mosaicking, testing the influence of possible disturbing factors and
mitigating their effects by incorporating non-spectral ancillary information. Sharma et al. [3]
focus on tidal wetlands as an important reservoir of so-called blue carbon. In contrast to
the two previous reviews mainly focusing on bare soils in croplands, this review reveals
that the direct detection of SOC is, in wetlands, hindered by vegetation. Hence, their
review focuses on combining remote sensing with other data sources and co-variates and
investigating the vertical profile of SOC content rather than only the surface layer.

The free and open availability of satellite imagery, facilitated by the Copernicus pro-
gramme, has provided support to the mapping of surface soil properties and in particular
SOC. At the same time, constraints on the selection of optimal soil conditions for large
areas have arisen. The next five papers address these constraints, i.e., selecting bare soil
pixels, dealing with disturbance of soil moisture content and creating temporal composites
of images. The latter are a great asset for optimising the coverage of bare dry soil pixels in
a region for which the pixels are not all in optimal conditions at a single moment of acqui-
sition. Urbina-Salazar et al. [4] investigated the effects of the acquisition time of Sentinel
2 imagery, sampling period and Sentinel 1 soil moisture products on the SOC prediction
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of a cropland region in southwestern France. Moreover, they investigate the benefits of
integrating terrain-derived attributes in the SOC prediction model. They show that Sentinel
1 soil moisture products were helpful in extracting pixels under the driest conditions and
hence in improving the performance of the SOC prediction model. Zepp et al. [5] used
compositing techniques of multitemporal satellite images as an alternative to retrieve ex-
posed soils. They applied the soil composite mapping processor (SCMaP) to the Landsat
archive containing images covering Bavaria, Germanyfor the period 1984–2014, and show
that a 30-year SCMaP soil reflectance composite (SRC) averages exposed soil areas over
several years and produces spectra for pixels with a relatively constant soil moisture con-
tent, resulting in an accurate SOC prediction model (R2 = 0.67). Dvorakova et al. [6] had a
different approach for selecting bare soil pixels from a soil reflectance composite. Instead of
averaging long time series, they selected the ‘greening-up’ period based on a time series
of normalised difference vegetation index (NDVI) values and conclude that the best SOC
prediction models (R2 = 0.54) could be obtained in the greening-up period using a strict
normalised burn ratio 2 (NBR2) threshold. Möller et al. [7] provided a new method for
increasing the spatial resolution of SOC prediction maps. They used multi-temporal soil
reflectance composites (SRC) as an explanatory variable in order to generate aggregation
levels on which to apply a random forest SOC prediction model. Compared to the use of
terrain attributes, the use of SRC parameters leads to significant model improvement at
scales corresponding to the average field size. Heiden et al. [8] used temporal composites
instead of single-date multispectral images to account for the frequent vegetation cover
of soils and, thus, to obtain broader spatial coverage of bare soil pixels. Most soil com-
positing techniques require thresholds derived from spectral indices such as the NDVI
and NBR2 to separate bare soils from all other land cover types. They present a novel
histogram separation threshold (HISET) methodology deriving spectral index thresholds.
Angelopoulou et al. [9] evaluated airborne HySpex and spaceborne PRISMA hyperspectral
data for SOC and carbonate estimation in a cropland area of northern Greece. The results
indicate that the accuracy of the spaceborne PRISMA sensor is only slightly lower compared
to that of the airborne hyperspectral sensor (R2 = 0.78 vs. 0.76), even if the PRISMA was
only in its commissioning phase.

Research in the laboratory and in proximal sensing continues and contributes to the
better spectral modelling of SOC once the spectral resolution of the satellites matches that of
laboratory instruments, as is already the case for the PRISMA and EnMAP spaceborne hy-
perspectral sensors. It is expected that highly accurate spectral models can be developed in
the laboratory and transferred to the signal of hyperspectral satellites. Obviously, protocols
for the acquisition of such large spectral libraries need to be strictly controlled. Xu et al. [10]
showed that soil–probe contact measurements resulted in the optimum spectral quality and
estimation accuracy; that sieving the soil sample into particle sizes below 1 mm and drying
before spectral measurement effectively enhanced spectral quality and estimation accuracy;
and that the variation in soil temperature did not have a distinct influence on spectral qual-
ity. Moreover, laboratory spectroscopy contributes to the improved modelling of SOC with
different compositions. Francos et al. [11] examined the extent to which a generic approach
can assess SOC contents of different origins using spectral-based models. They created an
artificial big dataset composed of pure dune sand as a SOC-free background, which was
mixed with increasing amounts of different organic matter (OM) sources obtained from
commercial compost of different origins. Some environments such as forests and grassland
are unlikely to yield satisfactory SOC prediction models from remote sensing. Forests are
particularly difficult environments as they show a strong vertical gradient in SOC content
from organic to mineral horizons. Thomas et al. [12] developed a large spectral library
for forests and demonstrated that vis-NIR spectroscopy is suitable for assessing humus
conditions in Saxon forests (Germany), not only for mineral horizons but also for organic
Oh horizons in particular.

The last three contributions focus on SOC as an indicator of soil degradation. Qi et al. [13]
developed a spectrally based soil erosion mapping approach for a catchment in the black
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soil region of northeast China. They built a classification scheme for Sentinel-2 bare soil
composites for pixel-wise soil erosion mapping based on spectral features related to SOC
mobilisation. Baiamonte et al. [14] addressed SOC sequestration in conservation agricul-
ture at a regional scale. For Mediterranean countries, they noticed an over estimation of
0.11 Mg ha−1 yr−1 when the aridity index and soil erosion were considered. Ding et al. [15]
investigated the SOC content in thermo-erosion gullies, i.e., typical thermokarst features in
upland permafrost. They explained 53% (R2) of the SOC content variation using a machine
learning approach on co-variates from UAV images.
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